

Arithmétique des polynômes

Feuille 1

Exercice 1. Dans $\mathbb{C}[X]$, considérons les polynômes $A = X^3 + iX + i$ et $B = X^2 + X + i$ et les trois polynômes

$$\begin{cases} P = 2A - XB \\ Q = (X+i)A + (X-i)B \\ R = (X-2i+1)A - (X^2 - 2iX + 2i)B \end{cases}$$

Calculer P, Q, R et préciser leurs degrés.

Exercice 2. Soient $A = (X + 1)^3$ et $B = (1 - X)^3$.

- 1. Que valent les degrés de A et B?
- 2. Sans calcul, que peut-on dire de deg(A+B) et de deg(A-B)?
- 3. Calculer A + B et A B et leurs degrés.

Exercice 3. Considérons les polynômes $A = \overline{2}X^3 - \overline{3}X + \overline{5}$ et $B = \overline{3}X^4 - \overline{3}X^2 + \overline{2}$ à coefficients dans $\mathbb{Z}/6\mathbb{Z}$. Calculer A + B et AB et préciser leurs termes dominants. Que peut-on remarquer ? Expliquer.

Exercice 4. 1. Calculer le produit $(1+X)(1+X^2)(1+X^4)$.

2. Montrons par récurrence que

$$\forall n \in \mathbb{N}, \ \prod_{k=0}^{n} (1 + X^{2^k}) = 1 + X + X^2 + \dots + X^{2^{n+1}-1}.$$

Exercice 5. Vérifier que $(X^3 - X^2 + 1)(X^2 + X + 1) = X^5 + X + 1$; en déduire des factorisations de $X^5 + X - 1$ et de 100 009.

Exercice 6. Pour $A = X^3 - 2X + 1$, P = X + 1 et $Q = X^2$, calculer A(P), P(A), A(Q), Q(A).

Exercice 7. Soient $P_0 = 1$ et pour $n \ge 1$, $P_n = (1 + nX)P_{n-1}$.

- 1. Calculer P_1 , P_2 et P_3 .
- 2. Quel est le coefficient dominant de P_n ?
- 3. Calculer $P_n(1)$ et $P_n(0)$.

Exercice 8. Faire la division euclidienne de A par B dans $\mathbb{C}[X]$:

$$\begin{array}{c|cccc} A & B \\ \hline & 8 & 3 \\ 2X^4 - 3X^3 + 4X^2 - 5X + 6 & X^2 - 3X + 1 \\ X^3 - 3X^2 - X - 1 & 3X^2 - 2X + 1 \\ X^3 - X^2 - X & X - 1 + 2i \end{array}$$

Exercice 9. (*) Soit $P \in \mathbb{K}[X]$. Montrer que $P \circ P - X$ est divisible par P - X.

Exercice 10. Quels sont les polynômes de degré 4 congrus à X modulo $X^2 + 1$?

Exercice 11. Trouver les réels a et b pour que $X^2 - 2X + 1$ divise $X^5 + X^4 + aX^3 + bX^2 + 5X - 2$.

Exercice 12. Les restes des divisions euclidiennes d'un polynôme A par X-1 et X-2 sont respectivement 4 et 5. Quel est le reste de la division euclidienne de A par (X-1)(X-2)?

Exercice 13. Déterminer les polynômes $P \in \mathbb{K}[X]$ divisibles par leur dérivé P' pour

- 1. (*) $\mathbb{K} = \mathbb{C}$ et en déduire le cas $\mathbb{K} = \mathbb{R}$.
- 2. (**) pour $\mathbb{K} \supset \mathbb{Q}$ quelconque grâce au développement de Taylor.

Exercice 14. Déterminer les racines complexes du polynôme $P = X^5 + X^4 + X^3 + X^2 + X + 1$ et en déduire sa factorisation dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$.

Exercice 15. Déterminer a et b dans \mathbb{C} de manière que les racines de $P = X^4 - 26X^3 + 231X^2 + aX + b$ soient en progression arithmétique.

Exercice 16. Soit P un polynôme de degré $n \ge 1$ à coefficients réels possédant n racines réelles distinctes.

- 1. Montrer que P' possède exactement n-1 racines réelles distinctes. (Utiliser le théorème de Rolle.)
- 2. (*) En déduire que toutes les racines (complexes) de $P^2 + 1$ sont simples.

Exercice 17. Soit $a \in \mathbb{R}$ et $n \in \mathbb{N}$. Calculer le reste de la division euclidienne de $F_a = (X \sin(a) + \cos(a))^n$ puis $G_a = (X \cos(a) + \sin(a))^n$ par $X^2 + 1$.

Exercice 18. Soit $n \in \mathbb{N}$. Montrer que $A_n = nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n$ est divisible par $(X-1)^3$.

Exercice 19. Soit p un nombre premier. Considérons le polynôme $P = X^p$ à coefficients dans $\mathbb{Z}/p\mathbb{Z}$. Quelle est la multiplicité de la racine 0 de P? Calculer les dérivés de P. Que peut-on remarquer?

Exercice 20. Soit $n \in \mathbb{N}$. Montrer que $(X-1)^{n+2} + X^{2n+1}$ est divisible par $X^2 - X + 1$ dans $\mathbb{C}[X]$.

Exercice 21. (*) Soit $n \in \mathbb{N}$ et considérons le polynôme $P_n = \sum_{k=0}^n \frac{1}{k!} X^k \in \mathbb{R}[X]$.

- 1. Montrer que P_n n'a pas de racine multiple (regarder $P_n P'_n$) pour tout $n \in \mathbb{N}$.
- 2. Montrer par récurrence que pour tout n, P_{2n} n'a pas de racine réelle et P_{2n+1} a une unique racine réelle.