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1 Continuité

Cette section étend la notion de continuité à des fonctions R2 → R. Pour remplacer
la valeur absolue qu’on utilise pour R, on va considérer la fonction suivante :

∥ · ∥ : (x,y) ∈ R2 7→ max(|x|, |y|) ∈ R.

qu’on appelera « norme » (de R2). On la note habituellement ∥ · ∥∞ et on l’appelle
« norme infinie ».

Dans toute la suite, on écrira R2 pour l’espace vectoriel (usuel) (R2,+, ·) et plus
généralement Rm ou Rn pour l’espace vectoriel (usuel).

1.1 Topologie de R2

Proposition 1.1.1.

1. ∀λ ∈ R, ∀x ∈ R2, ∥λx∥ = |λ|∥x∥
2. ∀x ∈ R2, ∥x∥ = 0 =⇒ x = 0

3. ∀x,y ∈ R2, ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (inégalité triangulaire)

Démonstration. 1) Soient λ ∈ R et x = (x1, x2) ∈ R2. Alors comme |λxi| = |λ||xi| pour
i ∈ {1, 2} et que la multiplication par un réel positif conserve l’ordre, on obtient bien
∥λx∥ = |λ|∥x∥.

2) Soit x = (x1, x2) ∈ R2. Supposons que ∥x∥ = 0. Alors, pour i ∈ {1, 2},

0 ≤ |xi| ≤ max(|x1|, |x2|) = ∥x∥ = 0

et donc |xi| = 0 et xi = 0 pour i ∈ {1, 2}. Donc x = 0.
3) Soient x = (x1, x2) et y = (y1,y2) ∈ R2. Alors, pour i ∈ {1, 2},

|xi + yi|
IT dans R

≤ |xi|+ |yi| ≤ ∥x∥+ ∥y∥︸ ︷︷ ︸
ne dépend pas de i

.

et donc
∥x+ y∥ = max(|x1 + y1|, |x2 + y2|) ≤ ∥x∥+ ∥y∥.

Remarque 1.1.2. On dit que le couple (R2, ∥ · ∥) est un espace vectoriel normé.

Remarque 1.1.3. Pour généraliser la valeur absolue, on aurait pu utiliser n’importe quelle
fonction R2 → R vérifiant ces propriétés. Ces fonctions sont appelés « normes » sur
R2. Tous les résultats fonctionne de la même façon avec n’importe quel autre choix de
norme. Les exercices 1.1.4 et 1.1.6 présentent les normes usuelles sur R2. On utilisera
l’exercice 1.1.4 dans la section ??
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Exercice 1.1.4. Montrer que la fonction

∥ · ∥2 : (x,y) ∈ R2 7→»
x2 + y2.

est une norme de R2.
Indication : On pourra montrer l’inégalité de Cauchy-Schwarz

∀x = (x1, x2),y = (y1,y2) ∈ R2, | ⟨x,y⟩ | := |x1y1 + x2y2| ≤ ∥x∥2∥y∥2 (1)

en considérant la fonction polynomiale t 7→ ∥x + ty∥22 = ∥x∥22 + 2t ⟨x,y⟩ + t2∥y∥22 avec
x,y ∈ R2 fixés.

Remarque 1.1.5. On pourra aussi montrer qu’il y a égalité dans l’inégalité de Cauchy-
Schwarz si les deux vecteurs sont colinéaires.

Exercice 1.1.6. 1. Soit p ≥ 1. Montrer que les fonctions

∥ · ∥p : (x,y) ∈ R2 7→ p
»
|x|p + |y|p.

sont des normes de R2.
Indication : On pourra montrer que pour p,q ≥ 1 tels que

1

p
+

1

q
= 1,

on a :
∀a,b ∈ R,ab ≤ ap

p
+

bq

q

puis l’inégalité de Hölder :

∀x = (x1, x2),y = (y1,y2) ∈ R2, |x1y1 + x2y2| ≤ ∥x∥p∥y∥q

2. Montrer que pour tout x ∈ R2,

∥x∥ ≤ ∥x∥p ≤ 21/p∥x∥

et en déduire
lim
p→∞ ∥x∥p = ∥x∥.

Corollaire 1.1.7 (inégalité triangulaire inversée). ∀x,y ∈ R2, |∥x∥− ∥y∥| ≤ ∥x− y∥ .

Démonstration. Soient x,y ∈ R2. En appliquant l’inégalité triangulaire, on obtient les
deux inégalités suivantes :∥x∥ ≤ ∥y+ (x− y)∥

IT
≤ ∥y∥+ ∥x− y∥

∥y∥ ≤ ∥x+ (y− x)∥
IT
≤ ∥x∥+ ∥y− x∥ = ∥x∥+ |− 1|∥x− y∥ = ∥x∥+ ∥x− y∥

et donc {
∥x∥− ∥y∥ ≤ ∥x− y∥
∥y∥− ∥x∥ ≤ ∥x− y∥

On en déduit donc que

|∥x∥− ∥y∥| = max(∥x∥− ∥y∥, ∥y∥− ∥x∥) ≤ ∥x− y∥.
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Définition 1.1.8 (Boule). Soient a ∈ E et r > 0.
On appelle boule ouverte centrée en a de rayon r la partie

B(a, r) := {x ∈ R2 | ∥x− a∥ < r}

et boule fermée centrée en a de rayon r la partie

Bf(a, r) := {x ∈ R2 | ∥x− a∥ ≤ r}.

Exercice 1.1.9. Dessiner la boule unité B(0, 1).

Exercice 1.1.10. Soient a = (a1,a2) ∈ R2 et r > 0. Montrer que

B(a, r) =]a1 − r,a1 + r[×]a2 − r,a2 + r[

et
Bf(a, r) = [a1 − r,a1 + r] × [a2 − r,a2 + r].

Définition 1.1.11. On dit que la partie U ⊂ R2 est ouverte dans R2 (ou un ouvert de R2)
si

∀x ∈ U, ∃ε > 0, B(x, ε) ⊂ U

et que C ⊂ R2 est fermée dans R2 (ou un fermé de R2) si R2 \C est ouverte dans R2.

Remarque 1.1.12. Dans la suite, on omettra « de R2 » car cela sera implicite.

Exercice 1.1.13. Montrer qu’un singleton est fermé mais n’est pas ouvert.

Exercice 1.1.14. Montrer qu’une boule ouverte est ouverte et qu’une boule fermée est
fermée (d’où la terminologie).

Exercice 1.1.15. Montrer que D := {(x,y) ∈ R2 | x2 + y2 < 1} est ouvert et Df :=

{(x,y) ∈ R2 | x2 + y2 ≤ 1} est fermé.

Proposition 1.1.16.

1. L’ensemble vide ∅ et R2 sont ouverts et fermés.

2. L’union quelconque d’ouverts est ouverte.

3. L’intersection finie d’ouverts est ouverte.

4. L’intersection quelconque de fermés est fermée.

5. L’union finie de fermés est fermée.

Démonstration. 1) L’ensemble ∅ est trivialement ouvert. Et pour x ∈ R2, B(x, 1) ⊂ R2

par définition et donc R2 est ouvert. Par passage au complémentaire, R2 et ∅ sont aussi
fermés.

2) Soit (Ui)i∈I une famille d’ouverts. Montrons que
⋃

i∈IUi est ouvert.
Soit x ∈ ⋃

i∈IUi. Fixons i0 ∈ I tel que x ∈ Ui0 . Fixons ε > 0 tel que B(x, ε) ⊂ Ui0 (qui
existe car Ui0 est ouvert). Alors B(x, ε) ⊂ ⋃

i∈IUi.
3) Soient U1, . . . ,Un des ouverts. Montrons que

⋂n
i=1Ui est ouvert.

Soit x ∈ ⋂n
i=1Ui. Comme x ∈ Ui pour tout i ∈ {1, . . . ,n} et que les Ui sont ouverts

pour tout i alors
∀i ∈ {1, . . . ,n}, ∃εi > 0,B(x, εi) ⊂ Ui

Pour chaque i ∈ {1, . . . ,n}, fixons un tel εi. Posons ε := min(εi, 1 ≤ i ≤ n) > 0. Alors

∀i ∈ {1, . . . ,n},B(x, ε) ⊂ B(x, εi) ⊂ Ui

et donc B(x, ε) ⊂ ⋂n
i=1Ui.

4)5) découlent de 2) et 3) par passage au complémentaire.
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Remarque 1.1.17. L’intersection quelconque d’ouverts n’est pas nécessairement ouverte
et l’union quelconque de fermés n’est pas nécessairement fermée.

Exercice 1.1.18. — Montrer que
ó
− 1

n , 1
n

î2
est ouvert pour tout n ∈ N \ {0} mais que⋂

n≥1

ó
− 1

n , 1
n

î2
ne l’est pas.

— Montrer que
î
−1+ 1

n , 1+ 1
n

ó
est fermé pour tout n ∈ N\{0} mais que

⋃
n≥1

î
−1+ 1

n , 1+ 1
n

ó
ne l’est pas.

Définition 1.1.19. Soit S ⊂ R2.
On définit l’intérieur de S par

S̊ :=
¶
x ∈ R2 | ∃ε > 0, B(x, ε) ⊂ S

©
,

l’adhérence de S par
S :=

¶
x ∈ R2 | ∀ε > 0, B(x, ε) ∩ S ̸= ∅

©
.

Définition 1.1.20. On dit que S est dense dans E si S = E

Exercice 1.1.21. Soient a = (a1,a2) ∈ R2 et r > 0. Montrer les égalités suivantes :

—
˚̊ �Bf(a, r) = B(a, r) ;

— B(a, r) = Bf(a, r).

Exercice 1.1.22. Montrer que l’adhérence de D = {(x,y) | x2 + y2 < 1} est {(x,y) |

x2 + y2 ≤ 1} et que l’intérieur de Df = {(x,y) | x2 + y2 ≤ 1} est D.

Proposition 1.1.23. Soit S ⊂ R2.
On a les égalités suivantes :

1. Sc = (S̊)c ;

2. ı̊Sc = (S)c.

Démonstration. Nous allons montrer que
(
Sc

)c
= S̊. Soit x ∈ R2. Les assertions sui-

vantes sont équivalentes

i) x ∈
(
Sc

)c ;

ii) x /∈ Sc ;

iii) ¬ (∀ε > 0, B(x, ε) ∩ Sc ̸= ∅) ;

iv) ∃ε > 0, B(x, ε) ∩ Sc = ∅ ;

v) ∃ε > 0, B(x, ε) ⊂ S ;

vi) x ∈ S̊.

iii) équivalent à iv) vient du fait ensembliste suivant 1 : A∩ B = ∅ ⇔ A ⊂ Bc.
On déduit de ces équivalences que

(
Sc

)c
= S̊. En utilisant cette égalité avec Sc, on

obtient :

S =

Åı̊Scãc
et donc par passage au complémentaire

S
c
= ı̊Sc

et donc 2).

1. ⇒ : A ∩ B ⊂ Bc ∩ B = ∅ et donc A ∩ B = ∅ et ⇐ : si A ∩ B = ∅ alors si x ∈ A, x ne peut pas être dans
B car sinon x ∈ A∩ B = ∅ et donc x ∈ Bc.
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Exercice 1.1.24. Soit S ⊂ R2.
1. Montrer que S̊ ⊂ S ⊂ S.
2. (a) Montrer que S̊ est le plus grand ouvert contenu dans S.

(b) En déduire que S est un ouvert si et seulement si S̊ = S.
3. (a) Montrer que S est le plus petit fermé contenant S.

(b) En déduire que S est fermé si et seulement si S = S.

Exercice 1.1.25.
1. Montrer les propriétés suivantes :

i) ∀S, T ⊂ R2, S ⊂ T =⇒ S ⊂ T

ii) ∀S ⊂ R2, S = S

iii) ∀S, T ⊂ R2, S∪ T = S∪ T

iv) ∀S, T ⊂ R2, S∩ T ⊂ S∩ T

i’) ∀S, T ⊂ R2, S ⊂ T =⇒ S̊ ⊂ T̊

ii’) ∀S ⊂ R2, ˚̊S = S̊

iii’) ∀S, T ⊂ R2, ˚̆
S∩ T = S̊∩ T̊

iv’) ∀S, T ⊂ R2, ˚̆
S∪ T ⊃ S̊∪ T̊

2. Que dire des inclusions réciproques de iv) et iv’) ?

1.2 Suites dans R2

Définition 1.2.1. Une suite dans R2 est une fonction u : N → R2. On écrit un au lieu
de u(n) et u = (un)n∈N. On notera

Ä
u

(1)
n

ä
et
Ä
u

(2)
n

ä
les suites de R telles que

∀n ∈ N,un =
Ä
u

(1)
n ,u(2)

n

ä
.

Ce sont les composées de u avec les deux projections R2 → R définies par (x,y) 7→ x et
(x,y) 7→ y.

Définition 1.2.2. Soit S ⊂ R2. Une suite d’éléments de S, ou dans S, est une suite (un) de
R2 telle que

∀n ∈ N,un ∈ S.

Si S = R2, on omettra « de R2 ».

Définition 1.2.3. Soit (un) une suite et soit ℓ ∈ R2. On dit que (un) admet ℓ comme limite
ou converge vers ℓ ou tend vers ℓ si

∀ε > 0, ∃N ∈ N, ∀n ≥ N, ∥un − ℓ∥ < ε.

Dans ce cas on utilisera indifféremment les notations suivantes lim
n→+∞un = ℓ, limun =

ℓ ou un → ℓ.

Proposition 1.2.4. Soient (un) une suite de R2 et ℓ = (ℓ1, ℓ2) ∈ R2. Les assertions suivantes
sont équivalentes :

1. un → ℓ ;

2. ∥un − ℓ∥ → 0 ;

3. |u(i)
n − ℓi| → 0, i ∈ {1, 2} ;

4. u
(i)
n → ℓi, i ∈ {1, 2}.

Démonstration. Les équivalences 1) ⇔ 2) et 3) ⇔ 4) viennent du fait que les définitions
quantifiées sont identiques (car ∥un − ℓ∥ = |∥un − ℓ∥− 0| et |u(i)

n − ℓi| = ||u(i)
n − ℓi|− 0|

pour tout n).
Montrons maintenant l’équivalence 2) ⇔ 3)
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Supposons 2). Soit i ∈ {1, 2}. Soit ε > 0. Fixons N ∈ N tel que

∀n ≥ N, ∥un − ℓ∥ < ε.

On a alors :
∀n ∈ N, |u(i)

n − ℓi| ≤ ∥un − ℓ∥ < ε.

On en déduit donc que |u(i)
n − ℓi| → 0 pour i ∈ {1, 2}.

Réciproquement, supposons que |u(i)
n − ℓi| → 0 pour i ∈ {1, 2}. Soit ε > 0. Fixons

N1 ∈ N tel que
∀n ≥ N1, |u(1)

n − ℓ1| < ε

et N2 ∈ N tel que
∀n ≥ N2, |u(2)

n − ℓ2| < ε.

On en déduit que pour n ≥ max(N1,N2),

∥un − ℓ∥ = max(|u(1)
n − ℓ1|, |u(2)

n − ℓ2|) < ε.

et donc ∥un − ℓ∥ → 0.

Corollaire 1.2.5. La limite, quand elle existe, est unique.

Exercice 1.2.6. Démontrer le corollaire 1.2.5.

Corollaire 1.2.7. Soient (un) et (vn) deux suites convergentes de limite respective ℓ et ℓ ′. Alors

— un + vn → ℓ+ ℓ ′

— ∥un∥ → ∥ℓ∥.

Exercice 1.2.8. Démontrer le corollaire 1.2.7.

Définition 1.2.9. Une suite (un) de R2 est dite bornée si

∃M ∈ R, ∀n ∈ N, ∥un∥ ≤ M.

Proposition 1.2.10. Une suite convergente est bornée.

Exercice 1.2.11. Démontrer la proposition 1.2.10.

Proposition 1.2.12. Soit S ⊂ R2 et (un) une suite convergente d’éléments de S. Alors

lim
n→∞un ∈ S.

Démonstration. Notons ℓ la limite de (un). Soit ε > 0. Alors

∃N ∈ N, ∀n ≥ N, ∥un − ℓ∥ < ε.

En particulier, il existe N ∈ N tel que |uN − ℓ| < ε et donc

B(ℓ, ε) ∩ {un,n ∈ N} ̸= ∅.

Comme (un) est une suite d’éléments de S alors

B(ℓ, ε) ∩ S ̸= ∅.

et donc ℓ ∈ S.

Corollaire 1.2.13. Soit S ⊂ R2. La partie S est fermée si, et seulement si, toute suite conver-
gente de S converge dans S.
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Démonstration. Rappelons que S est fermée si, et seulement si, S = S (cf. 1.1.24).
Si S est fermée alors S ⊂ S et donc par 1.2.12, toute suite convergente de S converge
dans S = S.
Réciproquement, supposons que toute suite convergente de S converge dans S. On sait
que S ⊂ S (cf. 1.1.24). Montrons l’inclusion réciproque.

Soit x ∈ S. Alors
∀ε > 0,B(x, ε) ∩ S = ∅.

Pour tout n ∈ N, fixons un xn ∈ B
Ä
x, 1

n+1

ä
∩ S. Alors (xn) est une suite de S

convergeant vers x (on utilise le théorème d’encadrement de R et 1.2.4). Par hypothèse,
x = lim xn ∈ S et donc S ⊂ S.

Dans la démonstration, on a montré le résultat suivant :

Corollaire 1.2.14. Soit S ⊂ R2. Si x ∈ S alors il existe une suite (xn) de S tel que xn → x.

Remarque 1.2.15. Dans le cas de R, comme une suite convergente de [a,b] a une limite
dans [a,b] (par passage à la limite des inégalités), les intervalles « fermés » [a,b] sont
fermés (dans R).

1.3 Fonctions continues de R2

Notation 1.3.1. Soit m ∈ N>0. Pour la définition suivante, on considèrera sur Rm la
« norme » suivante :

∥ · ∥Rm : (x1, . . . , xm) ∈ Rm 7→ max(|x1|, . . . , |xm|) ∈ R.

Exercice 1.3.2. Vérifier que cette fonction vérifie (mutatis mutandis) la proposition 1.1.1.

Remarque 1.3.3. Les notions de « boule ouverte », « boule fermé », « ouvert », « fermé »
s’étendent à l’espace vectoriel normé (Rm, ∥ · ∥Rm ).

Définition 1.3.4. Soit S ⊂ R2 un sous-ensemble de R2.
On dit que f : S → Rm est continue en x ∈ S si

∀ε > 0, ∃δ > 0, ∀y ∈ S, ∥x− y∥ < δ =⇒ ∥f(x) − f(y)∥Rm < ε.

On dit qu’elle est continue si elle est continue en tout point de S.

Remarque 1.3.5. Comme la définition ne porte pas sur le domaine d’arrivée (mise à part
qu’on demande que f soit une fonction), on peut restreindre le domaine d’arrivée à un
sous-ensemble de Rm contenant l’image de f. On peut donc parler de continuité pour
une fonction S → T ⊃ f(S).

Remarque 1.3.6. On peut remplacer la norme ∥ · ∥ par la norme ∥ · ∥Rn afin de définir la
notion de continuité pour une fonction S ⊂ Rn → Rm.

Remarque 1.3.7. On peut définir 2 de façon analogue la limite d’une fonction S → R en
un point de S (ce qui a un sens grâce à la définition d’adhérence) : on dit que f converge
vers ℓ ∈ R2 en a ∈ S si

∀ε > 0, ∃δ > 0, ∀y ∈ S, ∥x− a∥ < δ =⇒ ∥f(x) − ℓ∥Rm < ε.

Remarque 1.3.8. Cette définition est équivalente à celle où on remplace les inégalités
strictes par des inégalités larges (quitte à remplacer ε par 2ε ou ε

2 selon le sens désiré).

2. Dans ce cours, on s’intéressera, pour l’essentiel, qu’à la continuité des fonctions ou à calculer des limites
sur S \ S. Ainsi, le sempiternel débat sur la caractère pointé/épointé de la limite n’a pas lieu d’être ici.
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Exercice 1.3.9. Montrer qu’une application linéaire R2 → Rm est continue.

Exercice 1.3.10. Montrer que ∥ · ∥ : R2 → R est continue.

Proposition 1.3.11. Soient f : S ⊂ R2 → Rm, g : T ⊂ Rm → Rp deux fonctions. Supposons
que f(S) ⊂ T , f est continue en a ∈ S et g est continue en f(a). Alors g ◦ f est continue en a.

Exercice 1.3.12. Démontrer la proposition 1.3.11.

Proposition 1.3.13. Soit f : S ⊂ R2 → Rm. Soient f1, . . . , fm : S → R les fonctions coor-
données de f, c’est-à-dire

∀x ∈ S, f(x) = (f1(x), . . . , fm(x)).

La fonction f est continue (en x ∈ S) si, et seulement si, les fonctions f1, . . . , fm sont continues
(en x).

Démonstration. C’est la même démonstration que 1.2.4

Remarque 1.3.14. De la même façon, le calcul de limite se fait coordonnées par coordon-
nées.

Proposition 1.3.15. Soient f,g : S → R deux fonctions continues (en a ∈ S) et λ ∈ R. Alors

1. f+ λg est continue (en a ∈ S) ;

2. fg est continue (en a ∈ S).

Exercice 1.3.16. Démontrer la proposition 1.3.15.

Proposition 1.3.17. Soit f : S → R une fonction continue et T ⊂ S. Alors f|T est une fonction
continue.

Démonstration. Cela vient du fait que pour une famille d’assertions (P(x))x∈S, si P(x)
est vraie pour tout x ∈ S alors elle est vraie pour tout x ∈ T ⊂ S.

Remarque 1.3.18. La notion de continuité d’une fonction en un point est locale. En effet,
f : S → Rm est continue en x si, et seulement si, il existe δ > 0 tel que f|S∩B(x,δ) est
continue en x.

Exercice 1.3.19. Soient S ⊂ R2 et f : S → R une fonction.
Montrer que les énoncés suivants sont équivalents :

1. f est continue ;

2. Pour tout ouvert 3 U de R, il existe un ouvert V de E tel que f−1(U) = V ∩ S ;

3. Pour tout fermé 4 C de R, il existe un fermé D de E tel que f−1(C) = D∩ S.

Proposition 1.3.20 (Critère séquentiel de continuité). Soit f : S ⊂ R2 → R une fonction.
Alors f est continue en a ∈ S si, et seulement si, pour toute suite (un) d’éléments de S qui
converge vers a, (f(un)) converge vers f(a).

Démonstration. ⇒ : Supposons que f est continue en a. Soit ε > 0. On peut se fixer δ > 0

tel que
∀x ∈ R2, ∥x− a∥ < δ ⇒ |f(x) − f(a)| < ε.

Soit (un) une suite qui converge vers a. Fixons N ∈ N tel que

∀n ≥ N, ∥un − a∥ < δ.

3. on rappelle que U ⊂ R est ouvert si pour tout x ∈ U, il existe ε > 0 tel que ]x− ε, x+ ε[⊂ U

4. le complémentaire d’un ouvert de R
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Ainsi, pour tout n ≥ N,
|f(un) − f(a)| < ε.

et donc (f(un)) tend vers f(a).⇐ : On va le démontrer par contraposée : supposons donc que f n’est pas continue
en a i.e.

∃ε > 0, ∀δ > 0, ∃x ∈ R, ∥x− a∥ < δ et |f(x) − f(a)| ≥ ε.

Fixons un tel ε. Pour tout n ∈ N, on peut donc choisir (en prenant δ = 1
n+1 pour

chaque n) un xn tel que

∥xn − a∥ <
1

n+ 1
et |f(xn) − f(a)| ≥ ε.

On a ainsi construit une suite (xn) qui converge vers a mais telle que (f(xn)) ne converge
pas vers f(a).

Remarque 1.3.21. Ce critère est utilisé de deux façons : calculer la limite d’une suite
à valeur réelles (comme dans le cas dans R) et surtout permettre de montrer qu’une
fonction n’est pas continue. Pour cela, il faut exhiber une suite qui converge vers un
point donné mais tel que l’image de cette suite ne converge pas vers la limite du point

Exercice 1.3.22. Montrer que la fonction f : R2 → R définie par

∀(x,y) ∈ R2, f(x,y) =

{
x2−y
x2+y

si y ̸= −x2

a sinon

n’est pas continue en (0, 0) pour n’importe quel choix de a ∈ R.

Proposition 1.3.23. Soit f : S → R une fonction. Supposons qu’il existe une fonction η :

R>0 → R qui tend vers 0 en 0 telle que

∀θ ∈ R, ∀r > 0, |f(r cos(θ), r sin(θ)) − f(0, 0)| < η(r)

Alors f est continue en (0, 0).

Démonstration. Fixons une telle fonction η. Soit ε > 0. Comme η(r) → 0 alors fixons
δ > 0 tel que

∀r ∈ R>0, r < δ ⇒ η(r) < ε.

Soit (x,y) ∈ S \ {0} avec ∥(x,y)∥ < δ√
2

. Comme 0 < x2 + y2 < δ2 alors il existe θ ∈ R

et r ∈]0, δ[ tels que (x,y) = (r cos(θ), r sin(θ)). Alors

|f(x,y) − f(0, 0)| = |f(r cos(θ), r sin(θ)) − f(0, 0)| < η(r) < ε

Avertissement 1.3.24. La convergence pour tout θ de f(r cos(θ), r sin(θ)) pour r → 0 n’est
pas suffisante pour conclure à la continuité de f. On a besoin de la majoration uniforme
en θ donnée dans la proposition 1.3.23.

Exercice 1.3.25. Soit f : R2 → R la fonction définie par

∀(x,y) ∈ R2, f(x,y) =

{
xy2

x2+y4 si (x,y) ̸= (0, 0)

0 sinon.
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1. Montrer que pour tout θ ∈ R,

lim
r→0

f(r cos(θ), r sin(θ)) = 0

2. Montrer que f n’est pas continue en (0, 0).

Définition 1.3.26. Une fonction f : S ⊂ R2 → D ⊂ R2 est un homéomorphisme si

— f est continue ;

— f est une bijection ;

— f−1 est continue.

On dit que S et D sont homéomorphes.

Remarque 1.3.27. Un homéomorphisme S → D induit une bijection entre les ensembles
d’ouverts (resp. fermés) de S et D. Cependant un homéomorphisme ne préserve la
norme (on parlerait alors d’isométrie).

Exemple 1.3.28. Soit f : D := {(x,y) ∈ R2 | x2 + y2 < 1} → B(0, 1) définie par

∀u ∈ D, f(u) :=
u

∥u∥ .

Cette fonction est un homéomorphisme.

Exercice 1.3.29. Montrer que B(0, 1) et B(a,R) sont homéomorphes pour n’importe quel
choix de a ∈ R2 et R > 0.

Exercice 1.3.30. Montrer que B(0, 1) et R2 sont homéomorphes.

Remarque 1.3.31. Pour les fonctions de R → R, les deux premières conditions im-
pliquent la troisième (car une fonction continue et bijective est strictement monotone
grâce à des considérations utilisant le théorème de la limite monotone). Ce n’est pas le
cas dans le cas général.

Exercice 1.3.32. Montrer que

θ ∈ [0, 2π[ 7→ (cos(θ), sin(θ)) ∈ S1 := {(x,y) ∈ R2 | x2 + y2 = 1}

est une fonction continue bijective mais n’est pas un homéomorphisme.

1.4 Théorème des bornes atteintes et compacité

Définition 1.4.1. On appelle (fonction) extractrice une fonction N → N strictement crois-
sante.

Proposition 1.4.2. Une fonction extractrice φ vérifie

∀n ∈ N,φ(n) ≥ n

Exercice 1.4.3. Démontrer la proposition 1.4.2.

Définition 1.4.4. Soit (un) une suite. Alors une suite de la forme (uφ(n)), où φ est une
fonction extractrice, est appelée sous-suite ou suite extraite de (un).

Proposition 1.4.5. Soit (un) une suite de R2 convergente vers ℓ ∈ R2. Alors toute sous-suite
de (un) converge vers ℓ.
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Démonstration. Soit ε > 0. Fixons N ∈ N tel que

∀n ≥ N, ∥un − ℓ∥ < ε

Comme une fonction extractrice φ vérifie φ([[N,+∞[[) ⊂ [[N,+∞[[ (par la la proposition
1.4.2) alors

∀n ≥ N, ∥uφ(n) − ℓ∥ < ε

et donc (uφ(n)) converge vers ℓ.

Définition 1.4.6. Soit S ⊂ R2. On dit que S est une partie compacte (ou est un compact) si
de toute suite d’éléments de S on peut en extraire une sous-suite convergente dans S.

Remarque 1.4.7. On peut remplacer dans la proposition 1.4.5 et dans la définition 1.4.6
R2 par Rm et remplacer ∥ · ∥ par ∥ · ∥Rm .

Proposition 1.4.8 (Bolzano-Weierstraß). De toute suite bornée, on peut extraire une sous-
suite convergente.

Exemple 1.4.9. Montrons que Bf(0,R) est une partie compacte de R2.
Soit

Ä
un =

Ä
u

(1)
n ,u(2)

n

ää
une suite de Bf(0,R). On en déduit que les deux suites (u(1)

n )

et (u(2)
n ) sont des suites de [−R,R] et sont donc bornées. Par Bolzano-Weierstraß, on peut

fixer une extractrice φ1 telle que (u(1)
φ1(n)) soit convergente vers un élément de [−R,R]

(cf. 1.2.15).
Comme la suite (u(2)

φ1(n)) est aussi bornée alors on peut fixer une extractrice φ2 telle

que (u(2)
φ1(φ2(n))) converge (vers un élément de [−R,R]). Comme (u(1)

φ1(φ2(n))) est une
sous-suite d’une suite convergente alors elle converge aussi.

En conclusion, par 1.2.4, la suite (uφ1(φ2(n))) converge vers un élément de Bf(0,R).
Ce qui conclut la démonstration de la compacité de Bf(0,R).

Proposition 1.4.10. Soit K un compact et S ⊂ K. Si S est fermée alors S est compacte.

Démonstration. Supposons que S est fermée. Soit (un) une suite de S. Comme (un) est,
en particulier, une suite de K alors, par compacité de K, on peut fixer une extractrice
φ telle que (uφ(n)) converge. Comme (uφ(n)) est une suite convergente de S alors sa
limite est dans S (cf. 1.2.13). La suite (un) admet donc une sous-suite convergente dans
S. On en déduit donc que S est compacte.

Définition 1.4.11. Soit S ⊂ Rm. On dit que S est une partie bornée (ou est un borné) s’il
existe M ∈ R≥0 tel que

∀x ∈ S, ∥x∥Rm ≤ M.

Exercice 1.4.12. Soit a ∈ R2 et r > 0. Montrer que Bf(a, r) est bornée.

Proposition 1.4.13. Soit K ⊂ R2. Si K est compacte alors elle est fermée et bornée.

Démonstration. Supposons K compacte. Soit (un) une suite convergente de K. Notons
ℓ sa limite. Alors par compacité, (un) admet une sous-suite convergeant dans K. Mais
toutes les sous-suites de (un) converge vers ℓ (cf. 1.4.5). Donc ℓ ∈ K.

Supposons que K n’est pas bornée i.e.

∀M ≥ 0, ∃x ∈ K, ∥x∥ > M

On peut donc considérer une suite (un) de K telle que

∀n ∈ N, ∥un∥ > n
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Supposons qu’il existe une sous-suite (uφ(n)) qui converge. Par 1.2.10, cette sous-suite
est bornée, ce qui absurde car

∥uφ(n)∥ > φ(n) ≥ n → ∞.

La réciproque de cette proposition est vraie 5 :

Proposition 1.4.14. Soit S ⊂ R2. Si S est fermée et bornée alors elle est compacte.

Démonstration. Supposons S fermée et bornée.
Soit (un) une suite de S. Comme (un) est bornée alors ses coordonnées (u(1)

n ) et (u(2)
n )

sont aussi bornées. De la même façon que dans 1.4.9, on peut utiliser le théorème de
Bolzano-Weierstraß pour obtenir une extractrice φ telle que (uφ(n)) converge. Comme
c’est une suite de S alors sa limite est aussi dans S (car S est fermé). En conclusion, on
a trouvé une sous-suite (un) qui converge dans S. La partie S est donc compacte.

Corollaire 1.4.15. Soit K un compact non-vide de Rm. Alors l’ensemble {∥x∥, x ∈ K} ⊂ R

admet un minimum et un maximum.

Démonstration. On va faire le cas « maximum ». Le minimum se fait de la même façon.
L’ensemble {∥x∥, x ∈ K} ⊂ R est une partie non-vide (car K est non-vide) et majorée
(car K est bornée car compacte, cf. 1.4.13). Elle a donc une borne supérieure supx∈K ∥x∥
que l’on notera dans la suite M. Montrons que cette borne supérieure est atteinte.

Par les propriétés de la borne supérieure, on peut trouver une suite (un) dans
{∥x∥, x ∈ K} ⊂ R telle que

∀n ∈ N,M−
1

n+ 1
< un ≤ M.

Comme un ∈ {∥x∥, x ∈ K} pour tout n alors on peut trouver une suite (xn) de K telle
que

∀n ∈ N,M−
1

n+ 1
< ∥xn∥ ≤ M.

Comme K est compacte alors on peut choisir une extractrice φ telle que (xφ(n)) converge
vers ℓ ∈ K. On a les inégalités suivantes grâce à la proposition 1.4.2

∀n ∈ N,M−
1

n+ 1
≤ M−

1

φ(n) + 1
< ∥xφ(n)∥ ≤ M.

En passant à la limite, on obtient avec le corollaire 1.2.7 et le théorème des gendarmes,

∥ℓ∥ = M

La borne supérieure supx∈K ∥x∥ est donc atteinte et est donc un maximum.

Exercice 1.4.16. En reprenant cette démonstration, montrer que si K ⊂ R est compact
alors K admet un minimum et un maximum.

Proposition 1.4.17. Soient S une partie de R2, K ⊂ S et f : S → Rm une fonction continue.
Si K est compacte alors f(K) est compacte.

5. mais contrairement à la proposition précédente, elle n’est vraie que dans des espaces vectoriels normés
qui sont de dimension finie.
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Démonstration. Supposons que K est compacte. Soit (yn) une suite de f(K). Soit (xn) une
suite de K telle que

∀n ∈ N,yn = f(xn)

Comme (xn) est une suite dans le compact K alors on peut fixer une extractrice φ

telle que (xφ(n)) converge vers ℓ ∈ K. Alors, par continuité de f (cf. 1.3.20), (yφ(n)) =

(f(xφ(n))) converge vers f(ℓ) ∈ f(K). On a donc trouvé une sous-suite de (yn) conver-
geant dans f(K), ce qui permet de conclure.

Définition 1.4.18. Une fonction f : S ⊂ R2 → Rm est dite bornée si f(S) est une partie
bornée de Rm.

Corollaire 1.4.19. Soit f : K → R une fonction continue définie sur un compact K non-vide.
Alors f est bornée et atteint ses bornes.

Démonstration. Comme K est compacte et f est continue alors f(K) est compacte (par
1.4.17). Elle est en particulier bornée (par 1.4.13). Grâce à 1.4.16, f(K) a un minimum
m = f(xmin) ∈ f(K) et un maximum M = f(xmax) ∈ f(K). Les réels m et M sont les
bornes de f et sont respectivement atteints en xmin et xmax
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