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1 Continuité

Cette section étend la notion de continuité & des fonctions R* — R. Pour remplacer
la valeur absolue qu’on utilise pour IR, on va considérer la fonction suivante :

11 () € R? = max(|x|, [y]) € R.

qu'on appelera « norme » (de R?). On la note habituellement || - ||« et on I'appelle
«norme infinie ».

Dans toute la suite, on écrira IR? pour l'espace vectoriel (usuel) (R?,+,-) et plus
généralement R™ ou R™ pour l'espace vectoriel (usuel).

1.1 Topologie de R?

Proposition 1.1.1.
1. YA € R, ¥x € R?, ||Ax|| = |Al]|x]|
2. ¥x €R?, x| =0 = x=0
3. ¥x,y € R?, |[x+yl| < |Ix]| + |ly|| (inégalité triangulaire)

Démonstration. 1) Soient A € R et x = (x1,%x2) € R%. Alors comme [Axi| = |A||x{| pour
i € {1,2} et que la multiplication par un réel positif conserve 1'ordre, on obtient bien
[AX]] = [A[][]]-

2) Soit x = (x1,x2) € R?. Supposons que x| = 0. Alors, pour i € {1,2},

0 < [xi| < max(fxal, [x2) = [[x] =0

et donc |xi| =0etx; =0 pourie {1,2}. Donc x = 0.
3) Soient x = (x1,%2) ety = (y1,y2) € R%. Alors, pour i € {1,2},

IT dans R
xityil < A lyidl <0 I+l
————

ne dépend pas de i

et donc
[x+yll = max([x1 +y1l, [x2 +y2[) < [Ix[| + [ly-

Remarque 1.1.2. On dit que le couple (R?, || - ||) est un espace vectoriel normé.

Remarque 1.1.3. Pour généraliser la valeur absolue, on aurait pu utiliser n'importe quelle
fonction R? — R vérifiant ces propriétés. Ces fonctions sont appelés « normes » sur
R?. Tous les résultats fonctionne de la méme fagon avec n’importe quel autre choix de
norme. Les exercices et présentent les normes usuelles sur R?. On utilisera
l’exercice dans la section ??
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Exercice 1.1.4. Montrer que la fonction

- ll2: (y) € R? = /x2 +y2.

est une norme de R?.
Indication : On pourra montrer l'inégalité de Cauchy-Schwarz

Vx = (x1,%2),Y = Y1,92) € R, | (x,y) | = [x1y1 +x2y2] < |IX]2]lyl2 (1)

en considérant la fonction polynomiale t +— ||x +tyl|3 = ||x||3 + 2t (x,y) + t?|[y||3 avec
x,y € R? fixés.

Remarque 1.1.5. On pourra aussi montrer qu’il y a égalité dans 1'inégalité de Cauchy-
Schwarz si les deux vecteurs sont colinéaires.

Exercice 1.1.6. 1. Soit p > 1. Montrer que les fonctions

I llp: (u) € R? = {/Ix[P + |yP.

sont des normes de R?.
Indication : On pourra montrer que pour p, q > 1 tels que

ona: I
Va,beIR,abga—+f
P q

puis l'inégalité de Holder :
Vx = (x1,%2),4 = (Y1,Y2) € R%, [x1y1 +x292| < [Ix|lp]lyllq
2. Montrer que pour tout x € R?,
IxIl < lxllp < 2P lx|

et en déduire
tim [l = ]
Corollaire 1.1.7 (inégalité triangulaire inversée). ¥x,y € R?, |||x]| — |lyll| < [lx—yl| .

Démonstration. Soient x,y € R?. En appliquant I'inégalité triangulaire, on obtient les
deux inégalités suivantes :

IT
X[ < lly+ =yl < lyll+[Ix—yll
IT
Iyl < e+ =9l < [Ixll+ [y =] = [Ix[[ + [ = Tlx =yll = lIx]| + x =yl

et donc
{nxn —lyll < x—vy]
[yl = IIx]| < [lx—y]

On en déduit donc que

[Pl = lly 1T = max[llf = [l [yl = [xI) < fx=yll-



Définition 1.1.8 (Boule). Soient a € E et > 0.
On appelle boule ouverte centrée en a de rayon r la partie

B(a,1) = {x € R? | |[x—a| <1}
et boule fermée centrée en a de rayon r la partie
Be(a, 7)== {x € R? | |x —a| <r}.
Exercice 1.1.9. Dessiner la boule unité B(0, 1).
Exercice 1.1.10. Soient a = (aj, a>) € R? et r > 0. Montrer que
B(a,r) =la; — 7, a7 +r[x]ay — 7, a2 + 7]

et
Be(a,7) =[a; —7, a1 +7] x[ax —T1,a2 +7].

Définition 1.1.11. On dit que la partie U C R? est ouverte dans R? (ou un ouvert de R?)
si
vx €U, de >0, B(x,e) CU

et que C C R? est fermée dans R? (ou un fermé de R?) si R?\ C est ouverte dans R2.
Remarque 1.1.12. Dans la suite, on omettra « de R? » car cela sera implicite.
Exercice 1.1.13. Montrer qu'un singleton est fermé mais n’est pas ouvert.

Exercice 1.1.14. Montrer qu'une boule ouverte est ouverte et quune boule fermée est
fermée (d’ou1 la terminologie).

Exercice 1.1.15. Montrer que D = {(x,y) € R? | x2 +y? < 1} est ouvert et Dy =
{(x,y) € R? [x? +y? < 1} est fermé.
Proposition 1.1.16.
1. L'ensemble vide @ et R? sont ouverts et fermés.
L'union quelconque d’ouverts est ouverte.
L’intersection finie d’ouverts est ouverte.

L'intersection quelconque de fermés est fermée.

AR

L’union finie de fermés est fermée.

Démonstration. 1) L'ensemble @ est trivialement ouvert. Et pour x € R2, B(x,1) C R?
par définition et donc IR? est ouvert. Par passage au complémentaire, R? et @ sont aussi
fermés.

2) Soit (Uj)ie1 une famille d’ouverts. Montrons que J;<1 U; est ouvert.
Soit x € Uieg Uj. Fixons ip € I tel que x € Uy,. Fixons € > 0 tel que B(x, ¢) C Uy, (qui
existe car U;  est ouvert). Alors B(x, €) C Uier Us.

3) Soient Uy, ..., Uy des ouverts. Montrons que ﬂ?:1 U; est ouvert.
Soit x € N~ U;. Comme x € U; pour tout i € {1,...,n} et que les U; sont ouverts
pour tout i alors

vie{l,...,n},3e; >0,B(x,¢q) C Uy

Pour chaque i € {1,...,n}, fixons un tel ¢;. Posons ¢ := min(e;, 1 <i < n) > 0. Alors
Vie {1,...,n},B(x, &) C B(x, &) C Uy

et donc B(x, €) C N~ Ws.
4)5) découlent de 2) et 3) par passage au complémentaire. O



Remarque 1.1.17. L'intersection quelconque d’ouverts n’est pas nécessairement ouverte
et l'union quelconque de fermés n’est pas nécessairement fermée.

2
Exercice 1.1.18. — Montrer que ] —%, % [ est ouvert pour tout n € IN'\ {0} mais que
2 7
Nn>1 ]—%, %[ ne l'est pas.

— Montrer que [—1 +1,14 %] est fermé pour toutn € IN'\ {0} mais que U, >1 [—1 +1,1+ %]
ne l'est pas.

Définition 1.1.19. Soit S C R2.
On définit l'intérieur de S par

§::{XEJR2\3£>O,B(X,S)CS},

l'adhérence de S par
S={xeR?|Ve>0,B(x,e)NS #D}.

Définition 1.1.20. On dit que S est dense dans Esi S = E

Exercice 1.1.21. Soient a = (a7, a>) € R? et v > 0. Montrer les égalités suivantes :
- Bf(a/ T) = B((l, T),
— B(a,r) = B¢(a, 7).

Exercice 1.1.22. Montrer que I'adhérence de D = {(x,y) | x? +y? < 1} est {(x,y) |
x% +y? < 1} et que l'intérieur de D¢ = {(x,y) [ x> +y? < 1} est D.

Proposition 1.1.23. Soit S C R?.
On a les égalités suivantes :

1. S¢ =(§)°;
2. 5¢ = 5)C.

Démonstration. Nous allons montrer que (ST)C = $. Soit x € R?. Les assertions sui-
vantes sont équivalentes

i) x € (S°)°;
ii) x ¢ S¢;
iii) = (Ve > 0, B(x,€) NS¢ #£ @);
iv) Je >0, B(x,e)NS¢ =Q;
v) de >0, B(x,¢) CS;
vi) x € §.
iii) équivalent a iv) vient du fait ensembliste suivantlﬂ: ANB=0 & A C B-.
On déduit de ces équivalences que (ST)C = $. En utilisant cette égalité avec S¢, on

obtient : e
5=(%)

et donc par passage au complémentaire

)

ST =s°¢

et donc 2). O

1. :ANBCB°NB=Qetdonc ANB=0Qet &:si ANB =@ alorssix € A, x ne peut pas étre dans
B car sinon x € ANB =@ et donc x € B€.




[*
[

[*
&

Exercice 1.1.24. Soit S C R?.
1. Montrer que $ C S C S.
2. (a) Montrer que $ est le plus grand ouvert contenu dans S.
(b) En déduire que S est un ouvert si et seulement si §=s.
3. (a) Montrer que S est le plus petit fermé contenant S.
(b) En déduire que S est fermé si et seulement si S = S.

Exercice 1.1.25.
1. Montrer les propriétés suivantes :

i) VS, TCR2,SCT = ScCT i) VS, TCR%,SCcT = ScT
ii) VSCR2,S=5 i) ¥SCcR2, §=§

iii) VS, TC R2, SUT=SUT iii") vs,Tcmz,ﬁzémf

iv) VS, TCR2,SATCcSNT iv’) VS,TC]RZ,SU/LTD Sut

2. Que dire des inclusions réciproques de iv) et iv’) ?

1.2 Suites dans R?

Définition 1.2.1. Une suite dans R? est une fonction u : N — RR2. On écrit un au lieu
de u(n) et u = (Un)neN- On notera (ug)> et (ug )> les suites de R telles que

Vn e N,u, = (u&l%u@) .

Ce sont les composées de u avec les deux projections R? — R définies par (x,y) — x et
xy) —y.

Définition 1.2.2. Soit S C R?. Une suite d’éléments de S, ou dans S, est une suite (u,,) de
R? telle que
Vn € N,u,, €S.

Si S = R?%, on omettra « de IR? ».

Définition 1.2.3. Soit () une suite et soit { € R?. On dit que (un) admet € comme limite
ou converge vers { ou tend vers { si

Ve >0,IN € N,Vn > N, ||lun —{|| < e.

Dans ce cas on utilisera indifféremment les notations suivantes lirﬂ un =L limu, =
n—-+oo

fouu, — L

Proposition 1.2.4. Soient (1) une suite de R? et { = ({1,0;) € R?. Les assertions suivantes
sont équivalentes :
1. un — ¢
cun =2 —0;
Y g 0,1 € {1,2);
ulY e, ie {1,2).

AW N

Démonstration. Les équivalences 1) & 2) et 3) & 4) viennent du fait que les définitions
quantifiées sont identiques (car |[un — || = ||jun —€|| — 0] et |u(7? —{| = Hug) — | —0]
pour tout n).

Montrons maintenant 1’équivalence 2) & 3)



Supposons 2). Soit i € {1,2}. Soit ¢ > 0. Fixons N € N tel que
vn >N, |lun — £ <.

On a alors : .
vneN, uld — 6] < flun — ] < e

On en déduit donc que |u$il) — | = 0pourice {12}

Réciproquement, supposons que WD~ =0 pour i € {1,2}. Soit € > 0. Fixons

N7 € N tel que
VnZN1,|ug)—€1| <€

et Ny € IN tel que
n > Nz,\u(f)—ﬁz\ < €.

On en déduit que pour n > max(N1,Ny),
1 2
|lun — €] = max(|u§1) — ], |u(n) -0 <e.
et donc ||un —¢J] — 0. O
Corollaire 1.2.5. La limite, quand elle existe, est unique.
Exercice 1.2.6. Démontrer le corollaire

Corollaire 1.2.7. Soient (un) et (vn) deux suites convergentes de limite respective L et £'. Alors
— Un +vn 2+

— lundl = €ll-
Exercice 1.2.8. Démontrer le corollaire
Définition 1.2.9. Une suite (u,) de R? est dite bornée si
M eR,Vn e N, [lun| <M.
Proposition 1.2.10. Une suite convergente est bornée.
Exercice 1.2.11. Démontrer la proposition
Proposition 1.2.12. Soit S C R? et (\yy) une suite convergente d'éléments de S. Alors
lim u, €S.
n=o0
Démonstration. Notons { la limite de (uy,). Soit € > 0. Alors
INeN, V>N, |lun —{ <e.
En particulier, il existe N € IN tel que |un — | < ¢ et donc
B, &) N{un,n € N} £Q.
Comme (un) est une suite d’éléments de S alors
B(t,e)NS # .
etdonc{ € S. O

Corollaire 1.2.13. Soit S C R?. La partie S est fermée si, et seulement si, toute suite conver-
gente de S converge dans S.



Démonstration. Rappelons que S est fermée si, et seulement si, S = S (cf. .
Si S est fermée alors S C S et donc par toute suite convergente de S converge
dans S =S.
Réciproquement, supposons que toute suite convergente de S converge dans S. On sait
que S C S (cf.[1.1.24). Montrons l'inclusion réciproque.
Soit x € S. Alors
Ve > 0,B(x,e)NS = Q.

Pour tout n € N, fixons un x, € B (x,%“) N S. Alors (xn) est une suite de S
convergeant vers x (on utilise le théoréme d’encadrement de R et[1.2.4). Par hypothese,

x =limx, € SetdoncS CS. O
Dans la démonstration, on a montré le résultat suivant :
Corollaire 1.2.14. Soit S C R?. Si x € S alors il existe une suite (xn) de S tel que Xn — X.

Remarque 1.2.15. Dans le cas de R, comme une suite convergente de [a, b] a une limite
dans [a, b] (par passage a la limite des inégalités), les intervalles « fermés » [a, b] sont
fermés (dans RR).

1.3 Fonctions continues de R?

Notation 1.3.1. Soit m € IN+ (. Pour la définition suivante, on considérera sur R™ la
«norme » suivante :

|- [[rm : (x1,...,xm) € R™ — max(|xq],..., |xm|) € R.
Exercice 1.3.2. Vérifier que cette fonction vérifie (mutatis mutandis) la proposition[I.1.1}

Remarque 1.3.3. Les notions de « boule ouverte », « boule fermé », « ouvert », « fermé »
s’étendent a 1'espace vectoriel normé (R™, || - ||gm).

Définition 1.3.4. Soit S C IR? un sous-ensemble de R2.
On dit que f: S = R™ est continue en x € S si

Ve>0,36>0,VyeS, |[[x—y|| < = [f(x)—fy)|rm < ¢.
On dit qu’elle est continue si elle est continue en tout point de S.

Remarque 1.3.5. Comme la définition ne porte pas sur le domaine d’arrivée (mise a part
qu’on demande que f soit une fonction), on peut restreindre le domaine d’arrivée a un
sous-ensemble de R™ contenant I'image de f. On peut donc parler de continuité pour
une fonction S — T D f(S).

Remarque 1.3.6. On peut remplacer la norme || - || par la norme || - |gn afin de définir la
notion de continuité pour une fonction S C R™ — R™.

Remarque 1.3.7. On peut déﬁnirE] de fagon analogue la limite d"une fonction S — R en
un point de S (ce qui a un sens grace a la définition d’adhérence) : on dit que f converge
vers { € R? en a € S si

Ve>0,36>0,VyeSs, [x—al <d = [f(x)—L||rm <e.

Remarque 1.3.8. Cette définition est équivalente a celle ott on remplace les inégalités
strictes par des inégalités larges (quitte & remplacer ¢ par 2e ou 5 selon le sens désiré).

2. Dans ce cours, on s’intéressera, pour l’essentiel, qu’a la continuité des fonctions ou a calculer des limites
sur S\ S. Ainsi, le sempiternel débat sur la caractére pointé/épointé de la limite n’a pas lieu d’étre ici.



& Exercice 1.3.9. Montrer qu’une application linéaire R? — R™ est continue.
& Exercice 1.3.10. Montrer que || - || : R?> — R est continue.

Proposition 1.3.11. Soient f: S C R*> — R™, g: T C R™ — RP deux fonctions. Supposons
que f(S) C T, f est continue en a € S et g est continue en f(a). Alors g o f est continue en a.

Exercice 1.3.12. Démontrer la proposition [1.3.11

Proposition 1.3.13. Soit f : S C RZ — R™. Soient f1,...,fm:S — R les fonctions coor-
données de f, c’est-a-dire
Vx € S, f(x) = (f1(x), ..., fm(x)).

La fonction f est continue (en x € S) si, et seulement si, les fonctions fy,. .., fm sont continues
(en x).

Démonstration. C’est la méme démonstration que [1.2.4] O

Remarque 1.3.14. De la méme fagon, le calcul de limite se fait coordonnées par coordon-

nées.

Proposition 1.3.15. Soient f,g: S — R deux fonctions continues (en a € S) et A € R. Alors
1. f+ Ag est continue (en a € S);

2. fg est continue (en a € S).
Exercice 1.3.16. Démontrer la proposition [1.3.15

Proposition 1.3.17. Soit f : S — R une fonction continue et T C S. Alors |1 est une fonction
continue.

Démonstration. Cela vient du fait que pour une famille d’assertions (Z(x))xes, si P(x)
est vraie pour tout x € S alors elle est vraie pour toutx € T C S. O

Remarque 1.3.18. La notion de continuité d"une fonction en un point est locale. En effet,
f: S — RR™ est continue en x si, et seulement si, il existe & > 0 tel que f|snp(x,s5) est
continue en x.

& Exercice 1.3.19. Soient S C R? et f: S — R une fonction.
Montrer que les énoncés suivants sont équivalents :
1. f est continue;
2. Pour tout ouvertE] U de R, il existe un ouvert V de E tel que (U =vns;
3. Pour tout ferméE] C de R, il existe un fermé D de E tel que f~'(C) =DnNS.
Proposition 1.3.20 (Critére séquentiel de continuité). Soit f: S C R? — R une fonction.

Alors f est continue en a € S si, et seulement si, pour toute suite (uyn) d’éléments de S qui
converge vers a, (f(un)) converge vers f(a).

Démonstration. = : Supposons que f est continue en a. Soit ¢ > 0. On peut se fixer 5 > 0
tel que
Vx € R?, ||x—af < & = [f(x) — f(a)| < e.

Soit (un) une suite qui converge vers a. Fixons N € IN tel que

vYn>N,|lup —al| <.

3. on rappelle que U C R est ouvert si pour tout x € U, il existe ¢ > 0 tel que Jx —¢,x +¢[C U
4. le complémentaire d'un ouvert de R



Ainsi, pour toutn > N,
[flun) — f(a)] < .

et donc (f(un)) tend vers f(a).
& 1 On va le démontrer par contraposée : supposons donc que f n’est pas continue
enai.e.
Je>0,V0>0,Ix eR,|x—a|] <bet|f(x)—f(a)| > e.

Fixons un tel . Pour tout n € N, on peut donc choisir (en prenant § = %H pour
chaque n) un xn, tel que

[xn —al| < et |[f(xn) —f(a)] > e.

n+1
On a ainsi construit une suite (x,) qui converge vers a mais telle que (f(xr,)) ne converge
pas vers f(a). O

Remarque 1.3.21. Ce critére est utilisé de deux facons : calculer la limite d’'une suite
a valeur réelles (comme dans le cas dans R) et surtout permettre de montrer qu'une
fonction n’est pas continue. Pour cela, il faut exhiber une suite qui converge vers un
point donné mais tel que I'image de cette suite ne converge pas vers la limite du point

& Exercice 1.3.22. Montrer que la fonction f : R? — R définie par

xzfy . 2
Vi y) € R2, f(x,y) = |~y DY
a sinon

n’est pas continue en (0, 0) pour n'importe quel choix de a € R.

Proposition 1.3.23. Soit f : S — R une fonction. Supposons qu’il existe une fonction 1 :
R~ o — R qui tend vers 0 en 0 telle que

V0 € R,Vr > 0, |f(rcos(), rsin(8)) — (0, 0)| < n(r)
Alors f est continue en (0, 0).

Démonstration. Fixons une telle fonction n. Soit ¢ > 0. Comme n(r) — 0 alors fixons
5 > 0 tel que
VreRop,r<d=n(r) <e.

Soit (x,y) € S\ {0} avec ||(x,y)| < %. Comme 0 < x? +y? < 52 alors il existe 8 € R
et 1 €]0, 5[ tels que (x,y) = (rcos(0), rsin(0)). Alors
[7(x, ) — £(0,0)] = [#(rcos(0), Tsin(8)) — (0, 0)] < n(r) <
O

Avertissement 1.3.24. La convergence pour tout 0 de f(r cos(9), rsin(6)) pour r — 0 n’est
pas suffisante pour conclure a la continuité de f. On a besoin de la majoration uniforme

en 0 donnée dans la proposition [1.3.23

& Exercice 1.3.25. Soit f: R?> — R la fonction définie par

2 .
Yooy) € R2, fx,y) = 4 e SL00w) #(0,0)
0 sinon.



1. Montrer que pour tout 0 € R,

lim f(r cos(0), rsin(0)) =0
r—0

2. Montrer que f n’est pas continue en (0, 0).

Définition 1.3.26. Une fonction f: S C R? — D C IR? est un homéomorphisme si
— f est continue;
— f est une bijection;
— =1 est continue.

On dit que S et D sont homéomorphes.

Remarque 1.3.27. Un homéomorphisme S — D induit une bijection entre les ensembles
d’ouverts (resp. fermés) de S et D. Cependant un homéomorphisme ne préserve la
norme (on parlerait alors d’isométrie).

Exemple 1.3.28. Soit f: D := {(x,y) € R? | x%2 +y? < 1} — B(0, 1) définie par

u
Yu € D, f(u) = m

Cette fonction est un homéomorphisme.

Exercice 1.3.29. Montrer que B(0, 1) et B(a, R) sont homéomorphes pour n'importe quel
choix de a € R? et R > 0.

Exercice 1.3.30. Montrer que B(0, 1) et R? sont homéomorphes.

Remarque 1.3.31. Pour les fonctions de R — IR, les deux premieres conditions im-
pliquent la troisieme (car une fonction continue et bijective est strictement monotone
grace a des considérations utilisant le théoreme de la limite monotone). Ce n’est pas le
cas dans le cas général.

Exercice 1.3.32. Montrer que
0 € [0, 2 (cos(0),sin(0)) € 8! == {(x,y) € R? | x? +y? =1}

est une fonction continue bijective mais n’est pas un homéomorphisme.

1.4 Théoreme des bornes atteintes et compacité

Définition 1.4.1. On appelle (fonction) extractrice une fonction IN — IN strictement crois-
sante.

Proposition 1.4.2. Une fonction extractrice ¢ vérifie
YneN,pn) >n
Exercice 1.4.3. Démontrer la proposition [T.4.2]

Définition 1.4.4. Soit (un) une suite. Alors une suite de la forme (uyn)), ol @ est une
fonction extractrice, est appelée sous-suite ou suite extraite de (un).

Proposition 1.4.5. Soit (un) une suite de R? convergente vers { € R2. Alors toute sous-suite
de (un) converge vers {.

10



Démonstration. Soit ¢ > 0. Fixons N € IN tel que
Vn >N, [lun —{|| <e

Comme une fonction extractrice ¢ vérifie @([N,+oo[) C [N, +oo[ (par la la proposition

1.4.2) alors

Yn >N, Hu(p(n) —8” <€

et donc (uy(n)) converge vers {. O

Définition 1.4.6. Soit S C IR%. On dit que S est une partie compacte (ou est un compact) si
de toute suite d’éléments de S on peut en extraire une sous-suite convergente dans S.

Remarque 1.4.7. On peut remplacer dans la proposition et dans la définition [T.4.6
R? par R™ et remplacer || - || par || - ||gm-

Proposition 1.4.8 (Bolzano-Weierstra8). De toute suite bornée, on peut extraire une sous-
suite convergente.

Exemple 1.4.9. Montrons que B (0, R) est une partie compacte de R?.

Soit (un = <ug), u(f))) une suite de B¢(0, R). On en déduit que les deux suites (ug))

et (ug)) sont des suites de [—R, R] et sont donc bornées. Par Bolzano-Weierstrafs, on peut
fixer une extractrice ¢ telle que (u(q]): (n)) soit convergente vers un élément de [—R, R]
(cf.[1.2.15).

Comme la suite (u(ji

que (u(éi( (pz(n))) converge (vers un élément de [—R,R]). Comme (u((;

sous-suite d"une suite convergente alors elle converge aussi.
En conclusion, par la suite (1, (p,(n)) converge vers un élément de B¢(0, R).
Ce qui conclut la démonstration de la compacité de B¢(0, R).

( n)) est aussi bornée alors on peut fixer une extractrice @, telle

)

L(@a(ny)) €st une

Proposition 1.4.10. Soit K un compact et S C K. Si S est fermée alors S est compacte.

Démonstration. Supposons que S est fermée. Soit (u,) une suite de S. Comme (uy,) est,
en particulier, une suite de K alors, par compacité de K, on peut fixer une extractrice
@ telle que (ymn)) converge. Comme (1 n)) est une suite convergente de S alors sa
limite est dans S (cf. . La suite (u,,) admet donc une sous-suite convergente dans
S. On en déduit donc que S est compacte. O

Définition 1.4.11. Soit S C R™. On dit que S est une partie bornée (ou est un borné) s’il
existe M € R>( tel que
Vx €S, ||x]|gm < M.

Exercice 1.4.12. Soit a € R? et r > 0. Montrer que B¢(a, ) est bornée.
Proposition 1.4.13. Soit K C R2. Si K est compacte alors elle est fermée et bornée.

Démonstration. Supposons K compacte. Soit (u,) une suite convergente de K. Notons
{ sa limite. Alors par compacité, (un) admet une sous-suite convergeant dans K. Mais
toutes les sous-suites de (un) converge vers { (cf. . Donc { € K.

Supposons que K n’est pas bornée i.e.

YM >0,3x €K, ||x]| >M
On peut donc considérer une suite (u,) de K telle que

VneN, |lun| >n
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Supposons qu’il existe une sous-suite (1)) qui converge. Par [1.2.10} cette sous-suite
est bornée, ce qui absurde car

”u(p(n)” > @(Mm) >n — oo.

La réciproque de cette proposition est VraieE]:
Proposition 1.4.14. Soit S C R?. Si S est fermée et bornée alors elle est compacte.

Démonstration. Supposons S fermée et bornée.

Soit (uy ) une suite de S. Comme (uy,) est bornée alors ses coordonnées (ug )) et (u(T% ))
sont aussi bornées. De la méme fagon que dans on peut utiliser le théoreme de
Bolzano-Weierstrafs pour obtenir une extractrice ¢ telle que (1y(n)) converge. Comme
c’est une suite de S alors sa limite est aussi dans S (car S est fermé). En conclusion, on
a trouvé une sous-suite (un) qui converge dans S. La partie S est donc compacte. O

Corollaire 1.4.15. Soit K un compact non-vide de R™. Alors I'ensemble {||x||,x € K} C R
admet un minimum et un maximum.

Démonstration. On va faire le cas « maximum ». Le minimum se fait de la méme fagon.
L'ensemble {||x|,x € K} C R est une partie non-vide (car K est non-vide) et majorée
(car K est bornée car compacte, cf. . Elle a donc une borne supérieure sup_ .y ||x||
que I'on notera dans la suite M. Montrons que cette borne supérieure est atteinte.

Par les propriétés de la borne supérieure, on peut trouver une suite (un) dans
{lIx|l,x € K} C R telle que

1
meNM—- —— <u, <M.
n+1

Comme u,, € {[|x]|,x € K} pour tout n alors on peut trouver une suite (xn) de K telle
que

1
JE e — < .
vneIN,M — <|lxnll <M

Comme K est compacte alors on peut choisir une extractrice ¢ telle que (xn)) converge
vers { € K. On a les inégalités suivantes grace a la proposition [1.4.2]

VnEN,M—L<M

o <M.
ntl = e +1 ° ol <

En passant a la limite, on obtient avec le corollaire et le théoreme des gendarmes,
el =M
La borne supérieure sup, .y ||x|| est donc atteinte et est donc un maximum. O

Exercice 1.4.16. En reprenant cette démonstration, montrer que si K C R est compact
alors K admet un minimum et un maximum.

Proposition 1.4.17. Soient S une partie de R?, K C S et f: S — R™ une fonction continue.
Si K est compacte alors f(K) est compacte.

5. mais contrairement a la proposition précédente, elle n’est vraie que dans des espaces vectoriels normés
qui sont de dimension finie.
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Démonstration. Supposons que K est compacte. Soit (yn) une suite de f(K). Soit (xn) une
suite de K telle que
vn € IN,yn = f(xn)

Comme (xn) est une suite dans le compact K alors on peut fixer une extractrice ¢
telle que (x(n)) converge vers { € K. Alors, par continuité de f (cf. [1.3.20), (yy(n)) =
(f(xp(n))) converge vers f({) € f(K). On a donc trouvé une sous-suite de (yn) conver-
geant dans f(K), ce qui permet de conclure. O

Définition 1.4.18. Une fonction f : S C R? — R™ est dite bornée si f(S) est une partie
bornée de R™.

Corollaire 1.4.19. Soit f: K — R une fonction continue définie sur un compact K non-vide.
Alors f est bornée et atteint ses bornes.

Démonstration. Comme K est compacte et f est continue alors f(K) est compacte (par

1.4.17). Elle est en particulier bornée (par [1.4.13). Grace a [1.4.16, f(K) a un minimum

m = f(Xmin) € f(K) et un maximum M = f(xmax) € f(K). Les réels m et M sont les
bornes de f et sont respectivement atteints en Xpin et Xmax O
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