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Fonctions à deux variables

Feuille 1 : Continuité dans R2

1 Topologie de R2

Exercice 1. Dessiner la boule unité B(0, 1).

Exercice 2. Soient a = (a1, a2) ∈ R2 et r > 0. Montrer que

B(a, r) =]a1 − r, a1 + r[×]a2 − r, a2 + r[

et
Bf (a, r) = [a1 − r, a1 + r]× [a2 − r, a2 + r].

Exercice 3. Montrer qu’un singleton est fermé et n’est pas ouvert. Que peut-on dire sur
un ensemble fini de points ? Un ensemble infini de points ?

Exercice 4. Montrer qu’une boule ouverte est ouverte et qu’une boule fermée est fermée.

Exercice 5 (Inégalité de Cauchy-Schwarz). Pour (x, y) ∈ R2, on pose :

∥(x, y)∥2 :=
√
x2 + y2

et pour tout couple ((x1, y1), (x2, y2)) ∈ (R2)2, on pose :

⟨(x1, y1), (x2, y2)⟩ := x1x2 + y1y2.

1. Soient u, v ∈ R2. Montrer que

∥u+ v∥22 = ∥u∥22 + 2 ⟨u, v⟩+ ∥v∥22.

2. Soient x, y ∈ R2. En remarquant que la fonction polynomiale

t 7→ ∥x+ ty∥22 = ∥x∥22 + 2t ⟨x, y⟩+ t2∥y∥22

est positive, montrer que
| ⟨x, y⟩ | ≤ ∥x∥2∥y∥2.

Exercice 6. Montrer que la fonction

∥ · ∥2 : (x, y) ∈ R2 7→
√
x2 + y2 ∈ R.

est une norme de R2.
Indication : On pourra utiliser l’inégalité de Cauchy-Schwarz.

Exercice 7. Montrer que D := {(x, y) ∈ R2 | x2 + y2 < 1} est ouvert et Df := {(x, y) ∈
R2 | x2 + y2 ≤ 1} est fermé.



Exercice 8. Soient a = (a1, a2) ∈ R2 et r > 0. Montrer les égalités suivantes :

—
˚̧ �Bf (a, r) = B(a, r) ;

— B(a, r) = Bf (a, r).

Exercice 9. Montrer que l’adhérence de D = {(x, y) | x2+y2 < 1} est {(x, y) | x2+y2 ≤
1} et que l’intérieur de Df = {(x, y) | x2 + y2 ≤ 1} est D.

Exercice 10. Soit S ⊂ R2.
1. Montrer que S̊ ⊂ S ⊂ S.
2. (a) Montrer que S̊ est le plus grand ouvert contenu dans S (c’est-à-dire pour tout

ouvert U contenu dans S, U ⊂ S̊).
(b) En déduire que S est un ouvert si et seulement si S̊ = S.

3. (a) Montrer que S est le plus petit fermé contenant S (c’est-à-dire pour tout fermé
F contenant S, S ⊂ F ).

(b) En déduire que S est fermé si et seulement si S = S .

Exercice 11. 1. Montrer les propriétés suivantes :

i) ∀S, T ⊂ R2, S ⊂ T =⇒ S ⊂ T

ii) ∀S ⊂ R2, S = S

iii) ∀S, T ⊂ R2, S ∪ T = S ∪ T

iv) ∀S, T ⊂ R2, S ∩ T ⊂ S ∩ T

i’) ∀S, T ⊂ R2, S ⊂ T =⇒ S̊ ⊂ T̊

ii’) ∀S ⊂ R2,
˚̊
S = S̊

iii’) ∀S, T ⊂ R2,
˚̆

S ∩ T = S̊ ∩ T̊

iv’) ∀S, T ⊂ R2,
˚̆

S ∪ T ⊃ S̊ ∪ T̊
2. Que dire des inclusions réciproques de iv) et iv’) ?

Exercice 12 (R2 est séparé). Soient a, b ∈ R2 avec a ̸= b. Montrer qu’il existe ε > 0 et
η > 0 tel que

B(a, ε) ∩B(b, η) = ∅.

2 Suites dans R2

Exercice 13. Soit (un)n∈N une suite convergente de R2, de limite ℓ ∈ R2. Montrer que
{un, n ∈ N} ∪ {ℓ} est un fermé de R2.

Exercice 14. Soit x ∈ [−1, 1]2\]− 1, 1[2. Donner une suite de ]− 1, 1[2 convergeant vers
x.

On fera un dessin des objets considérés.

Exercice 15. On se propose de montrer 1 que Q est dense dans R i.e.

∀x ∈ R,∀ε > 0, ]x− ε, x+ ε[∩Q ̸= ∅.

Soient x ∈ R et ε > 0.

1. Supposons ε > 1
2 . Montrer qu’il existe un entier dans ]x− ε, x+ ε[ ;

2. Prenons ε > 0 quelconque. Montrer qu’il existe q ∈ N \ {0} tel que qε > 1
2 .

3. En déduire le résultat.

1. à partir de l’existence de la partie entière : pour tout x ∈ R, il existe un entier n ∈ Z tel que
n ≤ x < n+ 1.



Exercice 16.

1. Montrer que
√
2 /∈ Q.

2. Montrer que pour tout irrationnel α, α+Q := {α+ x, x ∈ Q} est dense dans R.
3. En déduire que R \Q est dense dans R.

Exercice 17.

1. Montrer que Q2 et (R \Q)2 sont denses dans R2.

2. Soit F un fermé de R2 tel que F = F̊ . Montrer que F ∩Q2 est dense dans F . Est-ce

toujours vrai si le fermé F ne vérifie pas l’égalité F = F̊ ?

Indication 1 : On pourra commencer par se restreindre à F = Bf (0, 1).
Indication 2 : On pourra chercher un exemple de fermé ne vérifiant pas cette égalité.

3 Fonctions continues dans R2

Exercice 18. Montrer qu’une application R-linéaire R2 → Rm est continue.

Exercice 19. Montrer qu’une application Q-linéaire R2 → Rm continue est R-linéaire.

Exercice 20. Montrer que ∥ · ∥ : R2 → R est continue.

Exercice 21.

1. Soient m,n ∈ N. Montrer que (x, y) ∈ R2 7→ xmyn est une fonction continue.

2. Soient f1, . . . , fn : S ⊂ R2 → R des fonctions continues. Montrer que x ∈ S 7→∑n
i=1 fi(x) est une fonction continue.

3. En déduire que pour tout (aij) ∈ R(N2), la fonction (x, y) ∈ R2 7→
∑
ij aijx

iyj ∈ R
est une fonction continue. De telles fonctions sont appelées fonctions polynomiales
en deux variables.

4. Soient f : I ⊂ R et g : J ⊂ R → R deux fonctions continues. Montrer que la fonction
(x, y) ∈ I × J 7→ f(x) + g(y) ∈ R est continue.

5. Montrer que la fonction (x, y) ∈ {(x, y) ∈ R2 | x ̸= 0} 7→ y
x ∈ R est une fonction

continue.

6. En déduire que si p, q sont deux fonctions polynomiales en deux variables alors la

fonction (x, y) ∈ {(x, y) ∈ R2 | q(x, y) ̸= 0} 7→ p(x,y)
q(x,y) ∈ R est continue.

Solution :

1. Par l’exercice 18, les fonctions (x, y) 7→ x et (x, y) 7→ y sont continues. On sait que
le produit de deux fonctions continues R2 → R est continue donc on montre par
récurrence que le produit d’un nombre fini quelconque de fonctions continues est
continue. On en déduit donc que pour tout m,n ∈ N, les fonctions (x, y) 7→ xm et
(x, y) 7→ yn sont continues et donc leur produit aussi.

2. La somme de deux fonctions continues est continue donc on montre par récurrence
que la somme finie de fonctions continues est continue.

3. Les fonctions polynomiales en deux variables sont des sommes finies de (x, y) 7→
xnym, n,m ∈ N et sont donc des fonctions continues par les deux points précédents.

4. Les fonctions (x, y) ∈ I × J 7→ x ∈ I
f7→ f(x) ∈ R et (x, y) ∈ I × J 7→ y ∈

J
g7→ g(y) ∈ R sont continues comme composée de fonctions continues. On en

déduit donc que φ : (x, y) ∈ I × J 7→ (f(x), g(y)) est une fonction continue. De
plus, la fonction a : (x, y) 7→ x + y étant continue (car linéaire), on en déduit que
a ◦ φ : (x, y) 7→ f(x) + g(y) est continue.



5. Les fonctions (x, y) ∈ R∗ × R 7→ x ∈ R∗ 7→ 1
x est continue comme composée de

fonctions continues. Par produit avec la fonction continue (x, y) 7→ y, on en déduit
la continuité de ψ : (x, y) ∈ R∗ × R 7→ y

x .

6. La fonction

(x, y) ∈ {(x, y) ∈ R2 | q(x, y) ̸= 0} 7→ (q(x, y), p(x, y)) ∈ R∗ × R ψ7→ p(x, y)

q(x, y)

est continue comme composée de fonctions continues (questions 3 et 5).

Exercice 22. Soient S ⊂ R2 et f : S → R une fonction.
Montrer que les énoncés suivants sont équivalents :

1. f est continue ;

2. Pour tout ouvert 2 U de R, il existe un ouvert V de R2 tel que f−1(U) = V ∩ S ;

3. Pour tout fermé 3 C de R, il existe un fermé D de R2 tel que f−1(C) = D ∩ S.

Solution : 2 ⇒ 3 : Soit C un fermé de R. Alors

f−1(C) = f−1(R \ (R \ C)) = f−1(R) \ f−1(R \ C) = S \ f−1(R \ C)

Par hypothèse, R \ C étant ouvert, f−1(R \ C) = U ∩ S avec U un ouvert de R2. Donc

f−1(C) = S \ (U ∩ S) = U c ∩ S

Comme U est un ouvert de R2 alors U c est un fermé de R2.
3 ⇒ 2 : Ce cas se fait comme le précédent en intervertissant ≪ ouvert ≫ et ≪ fermé ≫.
2 ⇒ 1 : Soit x ∈ S. Soit ε > 0.
L’intervalle ]f(x)− ε, f(x) + ε[ est un ouvert de R. On en déduit donc que

f−1(]f(x)− ε, f(x) + ε[) = U ∩ S

avec U un ouvert de R2. Fixons un tel U .
Comme x ∈ U et que U est un ouvert de R2 alors on peut fixer δ > 0 tel que

B(x, δ) ⊂ U . On en déduit donc que B(x, δ) ∩ S ⊂ f−1(]f(x)− ε, f(x) + ε[). Autrement
dit, pour tout y ∈ S,

∥y − x∥ < δ ⇒ |f(y)− f(x)| < δ

[si y ∈ f−1(]f(x)− ε, f(x) + ε[) alors f(y) ∈ f−1(]f(x)− ε, f(x) + ε[]
On en déduit la continuité de f .
1 ⇒ 2 : Supposons f continue. Soit U un ouvert de R. Soit x ∈ f−1(U). Posons

y := f(x) ∈ U . Fixons 4 ε(x) > 0 tel que B(y, ε(x)) ⊂ U .
Par continuité de f , on peut fixer δ(x) > 0 tel que

∀x0 ∈ S, ∥x− x0∥ < δ(x) ⇒ |y − f(x0)| < ε(x)

et donc

B(x, δ(x)) ∩ S ⊂ f−1(B(y, ε(x)) (1)

car on peut réécrire l’implication précédente :

x0 ∈ B(x, δ(x)) ∩ S ⇒ f(x0) ∈ B(y, ε(x)).

2. on rappelle que U ⊂ R est ouvert si pour tout x ∈ U , il existe ε > 0 tel que ]x− ε, x+ ε[⊂ U
3. est le complémentaire d’un ouvert de R
4. j’ai noté les dépendances des δ/ε pour pouvoir les utiliser comme fonction dans (1)



Posons

V :=
⋃

x∈f−1(U)

B(x, δ(x)) = {u ∈ R2 | ∃x ∈ f−1(U), ∥x− u∥ < δ(x)}.

C’est un ouvert comme union d’ouverts. Montrons que V ∩ S = f−1(U) par double
inclusion.

⊂ :

V ∩ S =

Ñ ⋃
x∈f−1(U)

B(x, δ(x))

é
∩ S =

Ñ ⋃
x∈f−1(U)

B(x, δ(x)) ∩ S

é
(1)
⊂

Ñ ⋃
x∈f−1(U)

f−1(B(y, ε(x))

é
def ε
⊂

Ñ ⋃
x∈f−1(U)

f−1(U)

é
⊂ f−1(U)

⊃ : par définition de f , f−1(U) ⊂ S. Par construction de V , f−1(U) ⊂ V (puisque
x ∈ B(x, δ(x))).

Exercice 23. Déterminer si les sous-ensembles suivants sont ouverts, fermés, les deux ou
ni l’un ni l’autre :

1. A := {(x, y) ∈ R2 | x+ y > 2 et x− y < 0}
2. B := {(x, y) ∈ R2 | 0 < |x− 1| < 1} ;
3. C :=

{
(x, y) ∈ R2 | y = 1

x

}
4. D := {(x, y) ∈ R2 | 0 < x2 + y2 + 1 ≤ 4}

Solution : On va utiliser l’exercice précédent.

1. Les fonctions f1 : (x, y) 7→ x + y et f2 : (x, y) 7→ x − y sont continues. Comme
]2,+∞[ et ]−∞, 0[ sont des ouverts de R alors f−1

1 (]2,+∞[) et f−1
2 (]−∞, 0[) sont

des ouverts de R2 et donc

A = f−1
1 (]2,+∞[) ∩ f−1(]−∞, 0[)

est un ouvert de R2.

2. La fonction f : (x, y) 7→ x 7→ |x− 1| est une fonction continue comme composée de
fonctions continues. Comme ]0, 1[ est un ouvert de R alors

B = f−1(]0, 1[)

est un ouvert de R2.

3. Attention : on ne peut pas utiliser que C est l’image réciproque d’un fermé par
(x, y) 7→ y− 1

x car cette fonction n’est pas définie sur tout R2. On peut juste obtenir
un fermé de R2 qui intersecté avec R∗ × R donnerait C.

On utilise plutôt la fonction g : (x, y) 7→ xy − 1 (qui est continue sur R2 car poly-
nomiale). On en déduit que C = g−1(0) est fermé.

4. La fonction h : (x, y) 7→ x2 + y2 + 1 est continue car polynomiale.

Attention : le fait que D = h−1(]0, 4]) et ]0, 4] ne soit ni ouvert ni fermé n’implique
pas que D ne soit ni ouvert ni fermé (c’est l’inverse : si D n’est ni ouvert ni fermé,
il ne peut pas s’écrire comme l’image réciproque d’un ouvert ou d’un fermé).

Pour tout (x, y) ∈ R2, x2 + y2 + 1 ≥ 1 et donc

D = {(x, y) ∈ R2 | 1 ≤ x2 + y2 + 1 ≤ 4} = h−1([1, 4]).

est fermé.



Exercice 24. Montrer que les fonctions suivantes sont continues :

1. f1 : (x, y) 7→
®

xy2

x2+y2 si (x, y) ̸= (0, 0)

0 sinon.

2. f2 : (x, y) 7→

{ sin(xy)√
x2+y2

si (x, y) ̸= (0, 0)

0 sinon.

3. f3 : (x, y) 7→
®

x4y
x4+y6 si (x, y) ̸= (0, 0)

0 sinon.

Solution :

1. La fonction f1 est continue sur R2 \ {(0, 0)} comme fonction rationnelle dont le
dénominateur ne s’annule pas. Étudions le cas en (0, 0). Pour cela, on va passer en
coordonnées polaires : pour r > 0 et θ ∈ R

|f1(r cos(θ), r sin(θ))| =
∣∣∣∣∣ r cos(θ)r2 sin2(θ)

(r cos(θ))2 + (r sin(θ))2

∣∣∣∣∣ =
∣∣∣∣∣r3 cos(θ) sin2(θ)r2

∣∣∣∣∣ ≤ r3

r2
= r → 0

On a majoré f(r cos(θ), r sin(θ)) par une expression ne dépendant pas de θ et tendant
vers 0. On en déduit donc la continuité de f en (0, 0).

2. La fonction f2 est continue sur R2 \{0} comme quotient de fonctions continues (car
sin,

√
· et les fonctions polynomiales sont continues). Étudions maintenant le cas en

(0, 0) avec les coordonnées polaires : pour r > 0 et θ ∈ R

|f2(r cos(θ), r sin(θ))| =
∣∣∣∣ sin(r2 cos(θ) sin(θ))r

∣∣∣∣ (∗)
≤

∣∣∣∣r2 cos(θ) sin(θ)r

∣∣∣∣ ≤ r2

r
= r → 0

On a utilisé dans (∗) l’inégalité | sin(t)| ≤ |t| valable pour t ∈ R. Si on ne souvenait
pas de cette inégalité mais de l’équivalent sin(x) ∼0 x, on pouvait pour un ε > 0
(ne dépendant pas de θ), trouver un δ > 0 tel que

∀(x, y) ∈ R2, ∥(x, y)∥ < δ ⇒ (1− ε)|xy| ≤ | sin(xy)| ≤ (1 + ε)|xy|

ce qui permettait aussi de conclure.

3. La fonction f3 est continue sur R2 \ {(0, 0)} comme fonction rationnelle dont le
dénominateur ne s’annule pas. Étudions le cas en (0, 0). Pour cela, on va passer en
coordonnées polaires : pour r > 0 et θ ∈ R,

|f3(r cos(θ), r sin(θ))| =
∣∣∣∣ r5 cos(θ)4 sin(θ)

r4 cos(θ)4 + r6 sin(θ)6

∣∣∣∣ = ∣∣∣∣ r cos(θ)4 sin(θ)

cos(θ)4 + r2 sin(θ)6

∣∣∣∣
On va procéder par disjonction de cas :

— si cos(θ) = 0 (et donc sin(θ) ̸= 0, on a f3(r cos(θ), r sin(θ))| = 0 car sin(θ)6 ̸= 0.

— sinon, on a cos(θ)4 + r2 sin(θ)6 ≥ cos(θ)4 et donc

|f3(r cos(θ), r sin(θ))| ≤
∣∣∣∣r cos(θ)4 sin(θ)cos(θ)4

∣∣∣∣ = |r sin(θ)| ≤ r

Dans les deux cas, on a montré que |f3(r cos(θ), r sin(θ))| < r ce qui permet de
conclure.

Exercice 25. Montrer que la fonction f : R2 → R définie par

∀(x, y) ∈ R2, f(x, y) :=

®
x2−y
x2+y si y ̸= −x2

a sinon

n’est pas continue en (0, 0) pour n’importe quel choix de a ∈ R.



Solution : S’il existe un a qui rend la fonction f continue alors celui-ci est unique
(par unicité de la limite).

Supposons qu’il en existe un. Alors, par stabilité par composition de la continuité,
pour toute fonction continue γ : R → R2 telle que γ(0) = (0, 0), f ◦ γ est continue et
f ◦ γ(0) = a.

— si on prend γ(t) := (t, 0) alors pour tout t ∈ R, f ◦ γ(t) = t2

t2 = 1

— si on prend γ(t) := (t, t2) alors pour tout t ∈ R, f ◦ γ(t) = 0

ce qui est absurde.

Exercice 26. Soit f : R2 → R la fonction définie par

∀(x, y) ∈ R2, f(x, y) :=

®
xy2

x2+y4 si (x, y) ̸= (0, 0)

0 sinon.

1. Montrer que pour tout θ ∈ R,

lim
r→0

f(r cos(θ), r sin(θ)) = 0

2. Montrer que f n’est pas continue en (0, 0).

Exercice 27. Soit f : R → R une fonction dérivable. Montrer que la fonction

(x, y) ∈ R2 7→
®
f(y)−f(x)

y−x si x ̸= y

f ′(x) si x = y

est continue si, et seulement si, f est de classe C1.

Exercice 28. Montrer que B(0, 1) et B(a,R) sont homéomorphes pour n’importe quel
choix de a ∈ R2 et R > 0.

Exercice 29. Montrer que B(0, 1) et R2 sont homéomorphes.

Exercice 30. Montrer que

θ ∈ [0, 2π[7→ (cos(θ), sin(θ)) ∈ S1 := {(x, y) ∈ R2 | x2 + y2 = 1}

est une fonction continue bijective mais n’est pas un homéomorphisme.
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