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Abstract

A toric variety is a complex variety which is completely described by
the combinatorial data of a fan of strongly convex rational (with respect to a
lattice) cones. Due to this rationality condition, toric varieties are (equivari-
antly) rigid since if we deform a lattice, it can become dense. A solution to
this problem is to consider a stacky generalization of toric varieties where
the "lattice" is, in fact, a finitely generated subgroup of Rd (in the simpli-
cial case as introduced by L. Katzarkov, E. Lupercio, L. Meersseman and A.
Verjovsky). The goal of this talk is to explain the moduli spaces of quantum
toric stacks and their compactification.

Introduction

0.1 Classical toric varieties

Toric variety = normal complex variety with an action of an algebraic torus
(C∗)d having a dense orbit

Main interest : Fully described by fans i.e. families of rational strongly
convex cones (stable by intersection and taking faces).
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Each maximal cone represents a chart of P2 and the intersection of two such
cones give the transition (monomial) map.

Theorem 0.1. This correspondance is an equivalence of categories Fans → Torics
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0.2 Moduli spaces and rationality condition

Rationality condition ⇒ toric varieties are rigid as equivariant spaces :
The continuous deformation of cones and their underlying lattice leads to

dense subgroups of Rd

Example 0.2.

Γα = Z2 + αZ

{
is discrete and of rank 2 if α ∈ Q2

is not discrete and can be dense in R2 otherwise

If α = (1, π), Γα ≃ R× Z and if α = (
√
2,
√
3) then Γα = R2.

⇝ No moduli spaces of toric varieties.
We need to consider more general objects : "quantum toric stacks" as intro-

duced by Ludmil Katzarkov, Ernesto Lupercio, Laurent Meersseman, Alberto
Verjovsky.

Theorem 0.3 (KLMV,B). There exists a fine moduli space of quantum toric stacks
with fixed combinatorics i.e. a moduli space with a universal family.

(extending the equivalence of categories between fans and toric varieties).

Theorem 0.4 (B). These moduli spaces admit a natural compactification:

X X

M M

⌟

1 Quantum toric stacks

1.1 Step 1 : Replace the tori by quantum tori

We want to replace
Td := (C∗)d = Cd/Zd

by Cd/Γ with Γ ⊂ Rd.
Problem : Cd/Γ is not a variety if Γ is not discrete⇝ (Analytic) Stacks

Moduli spaces : need to fix the number of generators

Definition 1.1. • The quantum torus associated to the group epimorphism
(or calibration) h : Zn → Γ ⊂ Rd (such that h|Zd = id) is the Picard stack
("group stack")

Th := [Cd/hZn]
E≃ [Td/EhZn−d]
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• A morphism of quantum tori is a pair of morphisms (L : Rd → Rd′
, H :

Zn → Zn′
) such that the diagram

Zn Zn′

Γ Γ′

H

h h′

L

commutes.
Equivalently, it is a Picard stack morphism Th → Th′ .

Z2 Z2

Z+
√
2Z Z+

√
2Z

C C

Th = [C∗/Z] Th = [C∗/Z]

(x,y)7→(y,2x)

z 7→z
√
2

⟨−,(1,
√
2)⟩ ⟨−,(1,

√
2)⟩

«z 7→z
√

2»

z 7→z
√
2

The obtained morphism has no lifting T → T.
The group of morphisms Th → Th is Z +

√
2Z. More generally, the group of

characters of Th is

im(h)∗ = {g ∈ Rd | ∀y ∈ im(h) ⟨g, y⟩ ∈ Z}

and the group of cocharacters is isomorphic to Zn.

1.2 Step 2 : Affine Charts

Definition 1.2. A cone σ ⊂ Rd is simplicial if it is generated by a R-linear
family of Rd i.e. if there exists an automorphism L ∈ GLd(R) such that Lσ =
Cone(e1, . . . , edim(σ)).

Definition 1.3. • Let σ
L≃ Cone(e1, . . . , ek) ⊂ Rd be a simplicial cone, h :

Zn → Γ ⊂ Rd be a group epimorphism and H : Rn → Rn an isomor-
phism such that (LhH−1)|Zd = id then

Uσ := [Ck × Td−k/ELhH−1Zn−d]

• A toric morphism Uσ → Uσ′ is a stack morphism which restricts to a
torus morphism Th → Th′ .

Proposition 1.4. The correspondance σ ∈ SimpCones 7→ Uσ ∈ AffQTS is an
equivalence of categories.
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1.3 Step 3 : Gluing

Definition 1.5. A quantum fan is the data of

• an epimorphism h : Zn → Γ ;

• a fan ∆ where the rays are generated by the h(ei), i = 1 . . . n.

The elements of the set I := [[1, n]] \∆(1) are called virtual generators.

Let (∆, h) be a quantum fan. For each cone σ, τ ∈ ∆, we have

Uσ

Uσ∩τ

Uτ

open dense

open dense

Definition 1.6. The quantum toric stack X∆,h associated to (∆, h) is the colimit
of these diagrams i.e. the gluing of local models

1.4 Main statements on quantum toric stacks

Theorem 1.7 (Katzarkov, Lupercio, Meersseman, Verjovsky, 2020). The corre-
spondance (∆, h) ∈ SimpQFans 7→ X∆,h ∈ SimpQTS is an equivalence of cate-
gories.

Theorem 1.8 (Quantum GIT, Katzarkov, Lupercio, Meersseman, Verjovsky, 2020).
If (∆, h) is a simplicial quantum fan,

X∆,h = [S (∆)/Cn−d]

where

• S (∆) is a quasi-affine (classical) toric variety given by the combinatorics of ∆ ;

• Cn−d acts on S through (the exponential of) a Gale transform of h.

A Gale transform of h is a morphism k : Rn−d → Rn such that

0 Rn−d Rn Rd 0
k h

is exact

Example 1.9. For the quantum projective plane i.e. with h : (x, y, z) ∈ Z3 7→
(x+ az, y + bz) ∈ Γ, with a, b < 0 we have:

• S (∆) = C3 \ {0} ;
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• The action of C on S (∆) is defined by

t · (z1, z2, z3) = (exp(2iπat)z1, exp(2iπbt)z2, exp(2iπt)z3).

Rationnal case : if (a, b) ∈ Q<0 then it is a Z-gerbe over a weighted projective
plane (if −(a, b) ∈ N then it is over P(−a,−b, 1) and if (a, b) = −( p

q1
, r
q2
) then it

is over P(pqq1 ,
rq
q2
, q) where q = q1 ∨ v2).

2 Moduli spaces

2.1 Combinatorial type

Definition 2.1. The combinatorial type of a fan is the poset of its cones ordered
by inclusion

σ1

σ2

σ3

S2 := comb(∆P2) = {1, 2, 3, (1, 2), (1, 3), (2, 3)}
Definition 2.2. Let D be the combinatorial type of a fan. A morphism h : Rn →
Rd is D-admissible if for all I ∈ D, Cone(h(ei), i ∈ I) is strongly convex.

Example 2.3. h : R3 → R2, (x, y, z) 7→ (x− z, y − z) is S2-admissible.
h : R3 → R2, (x, y, z) 7→ (x, y − z) is not S2-admissible.

2.2 Moduli spaces

Definition 2.4. The moduli space of quantum toric stacks of dimension d, with
n generators and of combinatorial type D is

M (d, n,D) = {h : Rn → Rd | h is D-admissible}/iso

Theorem 2.5 (KLMV,2020 ; B.,2021). If D is the combinatorial type of a complete
simplicial fan, M (d, n,D) is an orbifold (≃ a quotient of an open subset Ω(d, n,D) ⊂
Rd(n−d)1 by the finite group AutPoset(D))

The admissibility condition is an open condition thanks to the simpliciality
of D.

Theorem 2.6 (B.,2022). The space Ω(d, n,D) is a connected semi-algebraic subset of
Rd(n−d).

The space Ω(d, n,D) is connected thanks to the completeness of D and its
inequations are given by determinants describing the combinatorics of D

1We fix a cone by automorphism and its d generators
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2.3 Examples

Example 2.7. Ω(2, 3, S2) = R2
<0 and Aut(S2) = D3 = S3.

Hence M (2, 3, S2) has the homotopy type of BS3 = K(S3, 1).
One can compute its singular cohomology with the group cohomology of S3.
Its de Rham cohomology is concentrated in degree 0.

More generally, for Sd = comb(∆Pd), we have:
Ω(d, d + 1, Sd) = Rd

<0, Aut(Sd) = Sd+1 and M (d, d + 1, Sd) ∼ BSd+1 =
K(Sd+1, 1).

Proposition 2.8 (B., 2022). If d = 2 then Ω(2, n,D) is contractible and M (2, n,D)
has the homotopy type of K(Dn, 1)

Example 2.9. The space Ω(2, 4, D) of (quantum) Hirzebruch surfaces is a fibra-
tion of solid hyperbolae over R<0 × R<0.

2.4 Universal family

Theorem 2.10 (B., 2021). Let D be the combinatorial type. Then there exists a uni-
versal family X → M (d, n,D) of quantum toric stacks of combinatorial type D.

Sketch of proof. We have a family of quantum GIT :

X̃ := [S (D)× Ω(d, n,D)/Cn−d] → Ω(d, n,D)

It induces a projection X = X̃ /Aut(D) → M (d, n,D). The tedious point to
check is the compatibility of the actions.

3 Compactification

3.1 Embedding

The morphism

Ω(d, n,D) Hom(Rn,Rd)epi Gr(n− d,Rn)
ker(−)

is an open immersion.
Two advantages :

• Gr(n− d,Rn) is a compact manifold ;

• The action of Aut(D) on the image of Ω(d, n,D) is easier to describe
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3.2 Compactification

Theorem 3.1 (B. ; 2021). There exists a natural compactification M of M = M (d, n,D)
i.e. there exists a family X → M such that :

1. We have the following commutative diagram:

X X

[Gr(n− d,Rn)/Aut(D)] M M

2. Over a point of M \ M , we get a quantum toric stack with a degenerated com-
binatorial type2 of D (i.e. a subposet of D with the same 1-cones, stable by
intersection and taking faces )

3.3 Example of the moduli space of projective planes

M (2, 3, DP2) = [Conv([1, 0, 0], [0, 1, 0], [0, 0, 1])/S3] ⊂ [RP2/S3]

i.e. a triangle in RP2 with an action of S3 which permutes the vertices and the
edges.

On each edges, we get a quotient of C2 \ {0} × C and on each vertices, we
get a quotient of C2 × C∗.

e2
•

e1
•

v •

v → R<0e1

v → R<0e2

S = C3 \ {0}

e2
•

e1
•

v

S ≃ C2 \ {0} × C

v → 0

e2
•

e1
•

v S ≃ C2 × C∗

v → 0

e2
•

e1v

2In other words, we remove the non-strongly convex cones
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