TORIC VARIETIES AND BEYOND

Antoine BOIVIN Université d'Angers

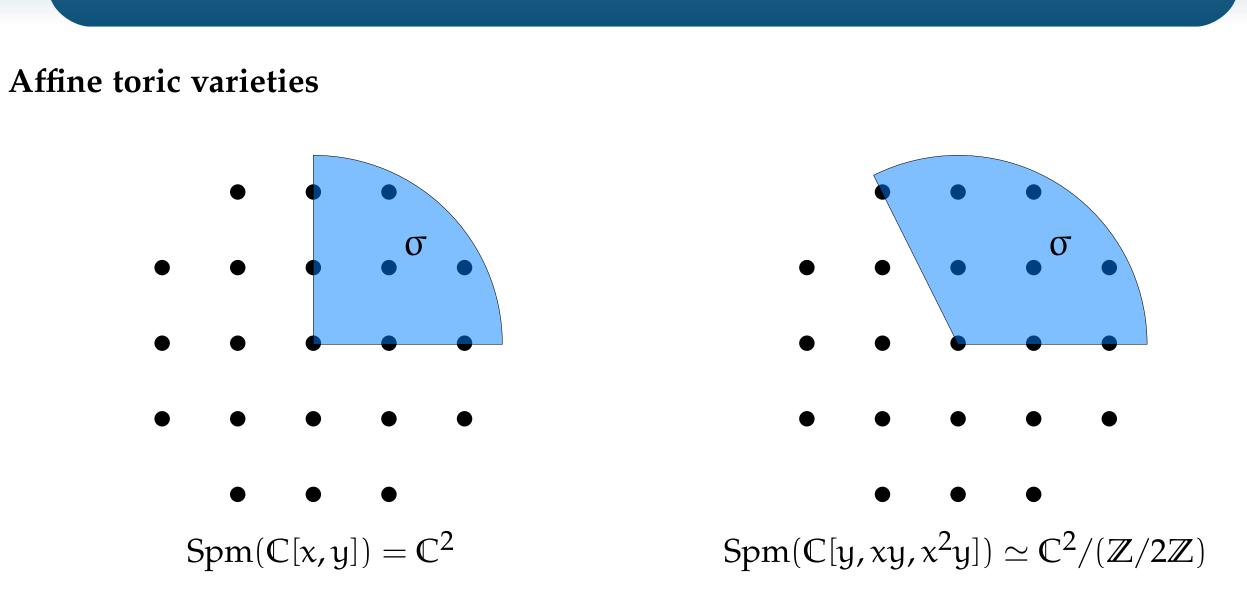
Definition

A toric variety is a normal complex variety with an action of the torus $(\mathbb{C}^*)^d$ having a dense orbit.

A combinatorial construction of toric varieties

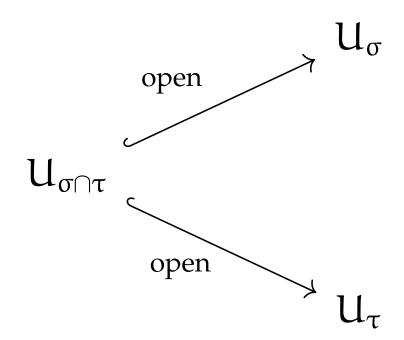
In order to build toric varieties, we will consider fans in \mathbb{R}^d i.e. families of rational (i.e. which have a family of generators in \mathbb{Z}^d) strongly convex (i.e. which do not contain lines) cones stable under taking intersections and faces. To each cone σ in a fan Σ , we associate the affine toric variety

Examples



$\mathcal{U}_{\sigma} \coloneqq \operatorname{Spm}(\mathbb{C}[\sigma^{\vee} \cap \mathbb{Z}^d])$

where $\sigma^{\vee} \coloneqq \{x \in \mathbb{R}^d \mid \forall u \in \sigma, \langle u, x \rangle \ge 0\}$ is the dual cone of σ . If we take two cones σ and τ in Σ then their intersection $\sigma \cap \tau$ is a (non-empty) cone in Σ and we have the following diagram



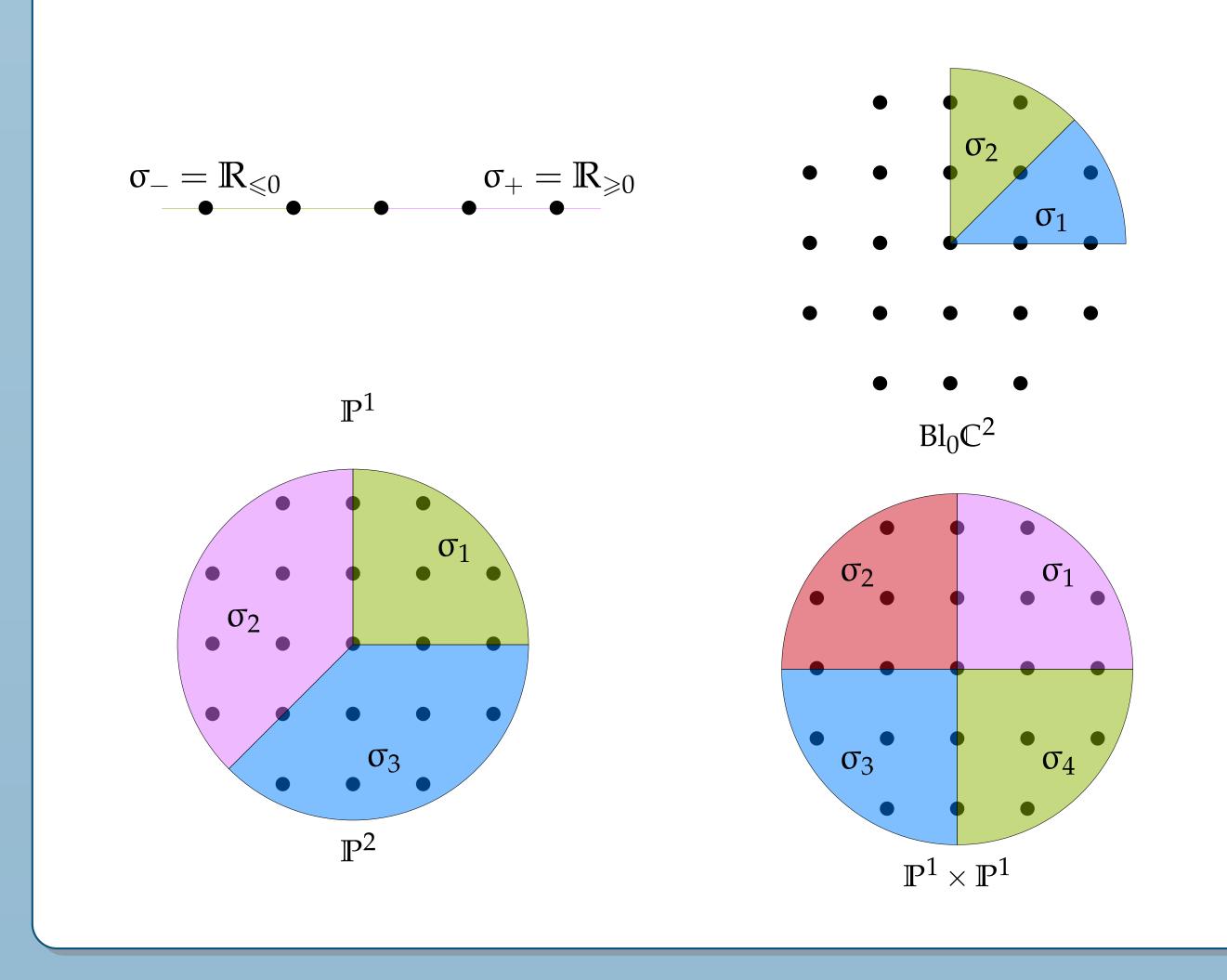
For each couple (σ, τ) , it defines transition maps between U_{σ} and U_{τ} Thus, they allow us to glue the affine varieties U_{σ} into a variety, which is also toric, denoted by X_{Σ} .

Central theorem

Theorem The map $\Sigma \mapsto X_{\Sigma}$ induces an equivalence of categories

Fans \simeq ToricVar

General toric varieties



Geometry-combinatorics dictionary

Geometry de X_{Σ}	Combinatorics of Σ
A $(\mathbb{C}^*)^d$ -orbit $O(\sigma) \coloneqq Spm(\mathbb{C}[\sigma^{\perp} \cap \mathbb{Z}^d]) \simeq (\mathbb{C}^*)^{d-\dim \sigma}$ of X_{Σ}	A cone σ of Σ
X_{Σ} is a smooth variety	Each cone of Σ is smooth (i.e. generated by a sub-family of a basis of \mathbb{Z}^d)
	In general, $\text{Reg}(X_{\Sigma}) = \bigcup_{\sigma \text{ smooth}} U_{\sigma}$
X_{Σ} is an orbifold (locally the quotient of an open subset of \mathbb{C}^d by a finite group)	Each cone of Σ is generated by a linearly independent family in \mathbb{R}^d
X_{Σ} is a proper variety (i.e. compact for the Euclidean topology)	$ \Sigma \coloneqq \bigcup_{\sigma \in \Sigma} \sigma = \mathbb{R}^d$
X_{Σ} is a projective variety	The maximal cones are generated by the faces of a polytope P (defining an ample divisor D_P)
Blow up along the (equivariant) divisor $\overline{O(\sigma)}$	Barycentric subdivision of σ

Towards quantum toric geometry

Problem Since the cones of a fan of a toric variety are rationals, we can not continuously deform a toric variety by deforming the cones of its fan: If we continuously deform the cone $Cone((-1,-1)) = \mathbb{R}_{\geq 0}(-1,-1)$ of the fan of \mathbb{P}^2 (the other rays remain unchanged), we might get cones of the form $Cone(\alpha)$ where $\alpha \in \mathbb{R}^2 \setminus \mathbb{Q}^2$. In

these cases, the obtained cones can not be rational (since the rank of the group $\Gamma = \mathbb{Z}^2 + \alpha \mathbb{Z}$ is 3).

Solution *Replace classical objects by "quantum" ones:*

	Classical	Quantum
Studied objects	Orbifold varieties	Analytic stacks
Tori	$(\mathbb{C}^*)^d = \mathbb{C}^d / \mathbb{Z}^d$	$[\mathbb{C}^d/\Gamma] = [(\mathbb{C}^*)^d/\exp(2i\pi\Gamma)]$ where Γ is a finitely generated subgroup of \mathbb{R}^d .
Cones	Simplicial rational cones	Simplicial cones generated by elements of Γ
Affine charts	\mathbb{C}^d/G with finite G	$[\mathbb{C}^d/\exp(2i\pi\Gamma)]$

References

[1] D.A. Cox, J.B. Little, and H.K. Schenck. *Toric Varieties*. Graduate studies in mathematics. American Mathematical Soc., 2011. [2] L. Katzarkov, E. Lupercio, L. Meersseman, and A. Verjovsky. Quantum (non-commutative) toric geometry: Foundations. Advances in Mathematics, 391:107945, 11 2021.